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quences with one defining parameter even and determine their periods modulo
sufficiently high powers of two.  1997 Academic Press

1. INTRODUCTION

Let a and b be fixed integers and let hui u i $ 0j be the two-term recurrence
sequence defined by u0 5 0, u1 5 1, and

(1.1)ui 5 aui21 1 bui22 .

For any positive integer m, consider the corresponding sequence huij, where
ui [ Z/mZ is obtained by reduction modulo m. If b and m are relatively
prime, then huij is purely periodic and, for each integer d, we denote the
number of occurrences of the residue d (mod m) in one (shortest) period
by n(m, d). The function n(m, d) is called the frequency distribution function
of the recurrence huij modulo m. A number of interesting open problems
concern these periodic sequences and their distribution functions, among
them the determination of the periods as a function of a, b, and m (see,
e.g., [4, 10, 11]) and the description of the frequency distribution functions
(see, e.g., [5, 7, 9]).
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Corresponding to a fixed recurrence sequence huij and modulus m, we
define

V(m) 5 hn(m, d) u d [ Zj

and say that the sequence is stable modulo a prime p if there is a positive
integer N such that

V(pk) 5 V(pN ) for all k $ N.

In [1–3] we examined the stability modulo two of sequences for which the
parameter a is odd and showed how stability leads to a precise description of
the frequency distribution functions of such sequences. In this paper we
apply techniques similar to those used in [1] to characterize the stability
of sequences whose parameter a is even.

2. PRELIMINARY RESULTS

For the duration of this section fix a two-term recurrence sequence huij,
as defined in (1.1), with a even and b odd. Define parameters r, s, and t
as follows:

(2.1)2t11 i a, 2s11 i (b 21), and 2r11 i (b 1 1).

Note that r, s, and t are not always defined: t is not defined when a 5 0,
and r and s are not defined when b 5 1 and b 5 21, respectively. Except
where explicitly stated, we will assume that r, s, and t are defined. Our
main results on stability depend on the relationships between r, s, and t.

We begin by stating without proof several well-known properties of the
two-term recurrence sequence huij (see, e.g., [2, 3, 8]).

Fact 1. The following formulas hold for all m $ 1 and n $ 0:

(a) um1n 5 bum21un 1 umun11 ,

(b) u2n11 5 b(un)2 1 (un11)2, and

(c) u2n 5 2unun11 2 a(un)2.

Fact 2. If n $ 0 and m $ 0, then un divides unm .

Fact 3. The integer un is even if and only if n is even.

LEMMA 2.1. If m . 0, then 2t1m i u2m.

Proof. Proceed by induction on m.
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If m 5 1, then u2m 5 u2 5 a and the lemma follows from the definition
of t.

Now suppose that m $ 1 and that 2t1m i u2m. By Fact 1, u2m11 5
2u2mu2m11 2 a(u2m)2. By the induction hypothesis and Fact 3, 2t1m11 i
2u2mu2m11. On the other hand, the induction hypothesis also implies that
23t12m11 i a(u2m)2. Since 3t 1 2m 1 1 . t 1 m 1 1, it follows that
2t1m11 i u2m11 , as desired. n

In the next two lemmas we gather together several useful, related congru-
ences.

LEMMA 2.2. Suppose that huij is the two-term recurrence sequence de-
fined above.

(a) If k . 0, then u2k11 ; 1 (mod 2k).

(b) If k . t and 0 , t , s, then u2k2111 ; 1 (mod 2k11).

(c) If k . t 1 1 and 0 , t , r, then u2k2111 ; 1 (mod 2k11).

Proof. Each part follows from Fact 1 and Lemma 2.1 by induction on
k. We prove (c) and leave the similar proofs of (a) and (b) to the reader.

Suppose that k 5 t 1 2. Then u2k2111 5 u5 5 b(u2)2 1 (u3)2. Since
22(t11) i a2, it follows that a2 ; 0 (mod 2k11). Therefore, since u2 5 a and
u3 5 a2 1 b, it follows that u5 ; b2 (mod 2k11). However, b2 2 1 5 (b 2
1)(b 1 1) and 2r11 i (b 1 1), so 2r12 i b2 2 1. Since r 1 2 $ t 1 3 5 k 1
1, it follows that b2 2 1 ; 0 (mod 2k11). Hence u2k2111 ; 1 (mod 2k11),
as desired.

Suppose that k . t 1 2 and assume that u2k2t2111 ; 1 (mod 2k). Then,
by Lemma 2.1, 2k21 i u2k2t21 and, since k $ 3, it follows that (u2k2t21)2 ; 0
(mod 2k11). Moreover, the induction hypothesis implies that (u2k2t2111)2 ;
1 (mod 2k11). Now, Fact 1 yields

u2k2t11 5 b(u2k2t21)2 1 (u2k2t2111)2 ; 1 (mod 2k11). n

LEMMA 2.3. Suppose that huij is the two-term recurrence sequence de-
fined above.

(a) If k . 1 and t 5 0, then u2k11 ; 1 1 2k (mod 2k11).

(b) If k . s and 0 , s , 2t, then u2k2s11 ; 1 1 2k (mod 2k11).

(c) If k . 2t 1 1 and 2t , s, then u2k22t11 ; 1 1 2k (mod 2k11).

(d) If k . r 1 1 and 0 , r , 2t, then u2k2r11 ; 1 1 2k (mod 2k11).

(e) If k . 2t 1 1 and 2t , r, then u2k22t11 ; 1 1 2k (mod 2k11).
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Proof. As in the previous lemma, the proofs of each part proceed by
induction on k and follow from Fact 1 and Lemma 2.1. We illustrate by
proving (e) and leave the remaining parts to the reader.

Suppose that k 5 2t 1 2. Then u2k22t11 5 u2211 5 u5 . Note that u2 5 a,
and therefore 2k i b(u2)2. Moreover, u3 1 1 5 (a2 1 b) 1 1 5 a2 1 (b 1
1). Since r . 2t, either r 5 2t 1 1 or r . 2t 1 1. In both cases 2k u u3 1 1
and (u3)2 2 1 ; 0 (mod 2k11). Thus, by Fact 1, u5 2 1 5 b(u2)2 1 (u3)2 2
1 ; 2k (mod 2k11).

Now suppose that k . 2t 1 2 and assume that u2k22t2111 ; 1 1 2k21 (mod
2k). Then, by Lemma 2.1, 2t1k22t21 i u2k22t21 and 2(t 1 k 2 2t 2 1) 5 (k 1
1) 1 (k 2 2t 2 3) $ k 1 1. Thus, b(u2k22t21)2 ; 0 (mod 2k11). Moreover,
since k $ 3, the induction hypothesis implies that (u2k22t2111)2 ; 1 1 2k

(mod 2k11). Finally, Fact 1 yields

u2k2211 5 b(u2k22t21)2 1 (u2k22t2111)2 ; 1 1 2k (mod 2k11). n

PROPOSITION 2.4. Suppose that huij is the two-term recurrence sequence
defined above.

(a) If k . 1 and t 5 0, then un12k ; un 1 2k (mod 2k11).

(b) If k . t and n is even, then un12k2t ; un 1 2k (mod 2k11).

(c) If k . s, 0 , s , 2t, and n is odd, then un12k2s ; un 1 2k (mod 2k11).

(d) If k . 2t 1 1, 0 , 2t , s, and n is odd, then un12k22t ; un 1 2k

(mod 2k11).

(e) If k . r1 1, 0 , r , 2t, and n is odd, then un12k2r ; un 1 2k

(mod 2k11).

(f) If k . 2t 1 1, 0 , 2t , r, and n is odd, then un12k22t ; un 1 2k

(mod 2k11).

Proof. (a) By Fact 1,

un12k 5 bun21 u2k 1 unu2k11 . (2.2)

Suppose that n is odd. Then Fact 3 implies that un21 is even and un is
odd. Hence, by Lemma 2.1, bun21u2k ; 0 (mod 2k11). Then Lemma 2.3(a)
and (2.2) imply that un12k ; un 1 2k (mod 2k11).

Now suppose that n is even. Then Fact 3 implies that un is even and un21

is odd. Hence, by Lemma 2.1, bun21u2k ; 2k (mod 2k11). On the other hand,
un(1 1 2k) ; un (mod 2k11). Thus, Lemma 2.3(a) and (2.2) again imply
that un12k ; un 1 2k (mod 2k11).
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(b) Since n is even, Fact 3 implies that un21 is odd. By Lemma 2.1,
2t1k2t i u2k2t, and therefore u2k2t ; 2k (mod 2k11). On the other hand, Fact
2 implies that u2 u un , and hence 2t11 u un . Moreover, by Lemma 2.2(a) with
k 2 t in place of k, u2k2t11 ; 1 (mod 2k2t), and hence unu2k2t11 ; un (mod
2k11). Consequently, Fact 1 yields

un12k2t 5 bun21u2k2t 1 unu2k2t11 ; un 1 2k (mod 2k11).

(c) Since n is odd, Fact 3 implies that un21 is even, and therefore Fact
2 implies that u2 u un21 . It follows that 2t11 u un21 . By Lemma 2.1, 2t1k2s i
u2k2s , and consequently 22t1k2s11 u bun21u2k2s. Since 2t 2 s . 0, it follows
that bun21u2k2s ; 0 (mod 2k11). Finally, by Fact 1 and Lemma 2.3(b),

un12k2s 5 bun21u2k2s 1 unu2k2s11 ; un 1 2k (mod 2k11).

(d), (e), (f) Imitate the proof of (c) using, respectively, Lemmas
2.3(c), 2.3(d), and 2.3(e) in place of Lemma 2.3(b). n

3. PERIODS

If huij is a two-term recurrence sequence, as defined in (1.1), and b is
relatively prime to m, then the reduced sequence modulo m is purely
periodic. The determination of the periods of reduced two-term recurrence
sequences is an interesting open problem—even for the Fibonacci sequence
itself (see, e.g., [10]).

If a is even and b is odd, the sequence huij is purely periodic modulo 2k

for any positive integer k. We will denote the length of a (smallest) period
by lk . In this section we will completely determine the periods lk when k
is sufficiently large. The periods depend upon the values of the parameters
r, s, and t defined in (2.1).

THEOREM 3.1. Suppose that huij is a two-term recurrence sequence as
defined in (1.1), with a even and b odd.

(a) If k . 1 and t 5 0, then lk 5 2k.

(b) If k . s 1 1 and 0 , s # t, then lk 5 2k2s.

(c) If k . t and 0 , t , s, then lk 5 2k2t.

(d) If k . r 1 2 and 0 , r # t, then lk 5 2k2r.

(e) If k . t 1 1 and 0 , t , r, then lk 5 2k2t.

Proof. (a) By Lemma 2.1 and Lemma 2.3(a), u2k ; 0 (mod 2k) and
u2k11 ; 1 (mod 2k). Thus lk divides 2k. On the other hand, Lemma 2.1
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implies that u2k21 ; 2k21 (mod 2k), and it follows that lk does not divide
2k21. Thus lk 5 2k.

(b) By Lemma 2.1, 2t1k2s i u2k2s. Since s # t, it follows that 2k u u2k2s ,
and hence u2k2s ; 0 (mod 2k). Moreover, by Lemma 2.3(b), u2k2s11 ; 1
(mod 2k). It follows that lk divides 2k2s. On the other hand, Lemma 2.3(b)
also implies that u2k2s11 ; 1 1 2k21 (mod 2k). Thus lk does not divide 2k2s21,
and hence lk 5 2k2s.

(c) By Lemma 2.1, 2k i u2k2t. Thus u2k2t ; 0 (mod 2k). Moreover, by
Lemma 2.2(b), u2k2t11 ; 1 (mod 2k). It follows that lk divides 2k2t. On the
other hand, Lemma 2.1 also implies that 2k21 i u2k2t21 , and thus u2k2t21 ;
2k21 (mod 2k). It follows that lk does not divide 2k2t21, and hence lk 5 2k2t.

(d) Imitate the proof of (b) using Lemma 2.3(d) in place of
Lemma 2.3(b).

(e) Imitate the proof of (c) using Lemma 2.2(c) in place of Lemma
2.2(b). n

4. STABILITY

In this section we state and prove the following two theorems.

THEOREM 4.1. Suppose that huij is a two-term recurrence sequence deter-
mined as in (1.1) by parameters a and b, with a even and b odd, and that
r, s, and t are defined by (2.1). Then huij is stable modulo 2 provided one
of the following conditions is true:

(a) t 5 0,

(b) s ? 2t and r ? 2t, or

(c) a ? 0 and b 5 61.

THEOREM 4.2. Suppose that huij is a two-term recurrence sequence deter-
mined as in (1.1) by parameters a and b, with a even and b odd, and that
r, s, and t are defined by (2.1).

If d is any integer, then n(2k11, d) 5 n(2k, d) for all sufficiently large k
provided one of the following conditions is true:

(a) t 5 0,

(b) s ? 2t and r ? 2t, or

(c) a ? 0 and b 5 61.

More precisely, in (a) it is sufficient to require k . 1 and in (b) and (c)
it is sufficient to require k . 2t 1 1.
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Note. Condition (c) in Theorems 4.1 and 4.2 corresponds to t being
defined while one of r or s is not defined.

The requirement that t 5 0 in (a) of Theorems 4.1 and 4.2 is equivalent
to a ; 2 (mod 4). It is worth observing that the sequences huij satisfying
this condition are uniformly distributed (see, e.g., Theorem 3.5, p. 38 of
[6]). We include a proof of stability in this case for completeness.

The proof of Theorem 4.1 requires only a short argument after Theorem
4.2 has been proven. Theorem 4.2 follows from a series of lemmas corre-
sponding to the relationships between the parameters r, s, and t and the
parity of d. We defer the proofs of these theorems to the end of the section.

Before presenting the proofs of Lemmas 4.3 through 4.13, we fix some
notation and make some observations common to the proofs of each lemma.
In each lemma, huij will be a recurrence sequence with defining parameters
a and b, with a even and b odd. Parameters r, s, and t will be defined by
(2.1), and in each lemma, r, s, and t will be subject to certain constraints.
The integer k will be fixed in each lemma and subject to a given inequality.
In each lemma, d will be a fixed integer and n 5 n(2k, d). Finally, integers
ni will be chosen to satisfy

0 # n1 , n2 , ? ? ? , nn , lk and uni
; d (mod 2k) for each i.

Clearly, for each i, either uni
; d (mod 2k11) or uni

; d 1 2k (mod 2k11).
Finally, by Fact 3, ni ; d (mod 2) for each i.

LEMMA 4.3. Suppose that k . 1 and t 5 0. Then n(2k11, d) 5 n(2k, d).

Proof. Fix an index i such that 0 , i # n. Since t 5 0, Theorem 3.1(a)
implies that lk 5 2k. By Proposition 2.4(a), uni1lk

; uni
1 2k (mod 2k11).

It follows that the elements huni
, uni1lk

j are congruent modulo 2k11 to d
and d 1 2k in some order. Choose ai [ hni , ni 1 lkj such that uai

; d
(mod 2k11). Since ai ; ni (mod 2k) and 0 # ai # 2lk 5 lk11 , it follows that
the integers ha1 , a2 , . . . , anj are distinct and

n(2k11, d) $ n 5 n(2k, d).

The same argument, with d 1 2k in place of d, yields

n(2k11, d 1 2k) $ n(2k, d 1 2k) 5 n(2k, d).

On the other hand, since lk11 5 2lk it follows that

(4.1)n(2k11, d) 1 n(2k11, d 1 2k) 5 2n(2k, d).
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Therefore the two preceding inequalities are equalities, and the lemma
follows. n

LEMMA 4.4. Suppose that k . s 1 1, 0 , s # t, and d is odd. Then
n(2k11, d) 5 n(2k, d).

Proof. Fix an index i such that 0 , i # n. By Theorem 3.1(b), lk 5
2k2s. By Proposition 2.4(c) (and the observation that ni is odd), uni1lk

;
uni

1 2k (mod 2k11).
It follows that the elements huni

, uni1lk
j are congruent modulo 2k11 to d

and d 1 2k in some order. Choose ai [ hni , ni 1 lkj such that uai
; d (mod

2k11). Since ai ; ni (mod 2k) and 0 # ai # 2lk 5 lk11 , it follows that the
integers ha1, a2, . . . , anj are distinct and

n(2k11, d) $ n 5 n(2k, d).

The same argument, with d 12k in place of d, yields

n(2k11, d 1 2k) $ n(2k, d 1 2k) 5 n(2k, d).

As in Lemma 4.3, the lemma follows from the two preceding inequalities
and (4.1). n

LEMMA 4.5. Suppose that k . s, 0 , t , s , 2t, and d is odd. Then
n(2k11, d) 5 n(2k, d).

Proof. Fix an index i such that 0 , i # n. By Theorem 3.1(c), lk 5
2k2t. The observation that ni is odd, followed by repeated application of
Proposition 2.4(c), yields, for all positive odd integers d,

uni1d22(s2t)lk
; uni

1 2k (mod 2k11).

Since 0 # ni , lk there is a unique integer ,i [ h0, 1, 2, . . . , 2s2t 2 1j
such that

(4.2),i22(s2 t)lk # ni , (,i 1 1)22(s2t)lk .

Let di 5 2(s2t11) 2 2,i 2 1. Clearly, di is odd and 1 # di # 2(s2t11) 2 1. Thus

(4.3)uni1di2
2(s2t)lk

; uni
1 2k (mod 2k11).

By (4.2),
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ni 1 S di

2(s2t)D lk $ S ,i

2(s2t) 1
2(s2t11) 2 2,i 2 1

2(s2t) D lk

(4.4)

5 S2(s2t11) 2 ,i 2 1
2(s2t) D lk $ S2(s2t11) 2 2s2t

2(s2t) D lk 5 lk .

Moreover, by (4.2) and Theorem 3.1(c),

ni 1 S di

2(s2t)D lk , S,i 1 1
2(s2t) 1

2(s2t11) 2 2,i 2 1
2(s2t) D lk

(4.5)

5 S2(s2t11) 2 ,i

2(s2t) D lk # S2(s2t11)

2(s2t) D lk 5 2lk 5 lk11 .

Together (4.4) and (4.5) imply that lk # ni 1 di22(s2t)lk , 2lk.
By (4.3), the elements uni

and uni1di2
2(s2t) (in some order) are congruent

modulo 2k11 to d and d 1 2k. Choose ai [ huni
, uni1di2

2(s2t)j such that ai ; d
(mod 2k11).

We now claim that n(2k11, d) $ n(2k, d). It suffices to show that the
integers ha1, a2, . . . , anj are distinct. To this end, suppose that i and j satisfy
i , j and ai 5 aj . Then ni , nj , lk . On the other hand, lk , ni 1
di 22(s2t)lk and lk , nj1 dj 22(s2t)lk . This can only occur when

ni 1 di 22(s2t)lk 5 nj 1 dj 22(s2t)lk .

It follows that

nj 2 nj 5 Sdi 2 dj

2s2t D lk 5 S2(,j 2 ,i)
2s2t D lk . (4.6)

On the other hand, by (4.2),

nj 2 ni , S,j 1 1
2s2t D lk 2 S ,i

2s2tD lk 5 S,j 2 ,i 1 1
2s2t D lk . (4.7)

Together, (4.6) and (4.7) imply that ,j 2 ,i , 1. However, since nj . ni ,
we know that ,j . ,i , and therefore ,j 2 ,i . 0. This contradiction proves
the claim.

The same argument, with d 1 2k in place of d, yields

n(2k11, d 1 2k) $ n(2k, d 1 2k) 5 n(2k, d).
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As in Lemma 4.3, the lemma follows from the two preceding inequalities
and (4.1). n

LEMMA 4.6. Suppose that either k . 2t 1 1, 0 , 2t , s, and d is odd
or t . 0, k . 2t 1 1, s is undefined, and d is odd. Then n(2k11, d) 5 n(2k, d).

Proof. Fix an index i such that 0 , i # n. By Theorem 3.1(c), lk 5
2k2t. Repeated application of Proposition 2.4(d) (and the observation that
ni is odd) yields, for all positive odd integers d,

uni1d22tlk
; uni

1 2k (mod 2k11).

The remainder of the proof is similar to the proof of Lemma 4.5. Choose
,i such that ,i [ h0, 1, 2, . . . , 2t 2 1j and

(4.8),i 22tlk # ni , (,i 1 1)22tlk .

Define di by di 5 22t11 2 2,i 2 1. As in the proof of Lemma 4.5, it now
follows that

(4.9)uni1di2
2tlk

; uni
1 2k (mod 2k11),

and

lk # ni 1 di 22tlk , 2lk .

We can now choose ai [ huni
, uni1di2

2tj such that ai ; d (mod 2k11). As
in the proof of Lemma 4.5, it is easy to prove that the integers ha1 ,
a2 , . . . , anj are distinct, and therefore

n(2k11, d) $ n 5 n(2k, d).

The same argument, with d 1 2k in place of d, yields

n(2k11, d 1 2k) $ n(2k, d 1 2k) 5 n(2k, d).

As in Lemma 4.3, the lemma follows from the two preceding inequalities
and (4.1). n

LEMMA 4.7. Suppose that k . r 1 2, 0 , r # t, and d is odd. Then
n(2k11, d) 5 n(2k, d).

Proof. Fix an index i such that 0 , i # n. By Theorem 3.1(d), lk 5
2k2r. By Proposition 2.4(e), (and the observation that ni is odd) uni1lk

;
uni

1 2k (mod 2k11).
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It follows that the elements huii
, uii1lk

j are congruent modulo 2k11 to d
and d 1 2k in some order. As in the proofs of Lemma 4.3 and Lemma 4.4,
we can choose distinct ai [ hni , ni 1 lkj such that uai

; d (mod 2k11).
Therefore n(2k11, d) $ n 5 n(2k, d).

The same argument, with d 1 2k in place of d, yields

n(2k11, d 1 2k) $ n(2k, d 1 2k) 5 n(2k, d).

As in Lemma 4.3, the lemma follows from the two preceding inequalities
and (4.1). n

LEMMA 4.8. Suppose that k . r 1 1, 0 , t , r , 2t, and d is odd. Then
n(2k11, d) 5 n(2k, d).

Proof. Fix an index i such that 0 , i # n. By Theorem 3.1(e), lk 5
2k2t. The observation that ni is odd, followed by repeated application of
Proposition 2.4(e), yields, for all positive odd integers d,

uii1d22(r2t)lk
; uni

1 2k (mod 2k11).

The remainder of the proof parallels the proof of Lemma 4.5. n

LEMMA 4.9. Suppose that either k . 2t 1 1, 0 , 2t , r, and d is odd
or t . 0, k . 2t 1 1, r is undefined, and d is odd. Then n(2k11, d) 5 n(2k, d).

Proof. Fix an index i such that 0 , i # n. By Theorem 3.1(e), lk 5
2k2t. Repeated application of Proposition 2.4(f) (and the observation that
ni is odd) yields, for all positive odd integers d,

uni1d22tlk
; uni

1 2k (mod 2k11).

The remainder of the proof parallels the proof of Lemma 4.6. n

Having treated odd residues, we now turn to the even. Since the proofs
of these lemmas follow the same scheme as the previous lemmas, we are
content to sketch the proofs.

LEMMA 4.10. Suppose that k . max(s 1 1, t), 0 , s # t, and d is even.
Then n(2k11, d) 5 n(2k, d).

Proof. By Theorem 3.1(b), lk 5 2k2s. By Proposition 2.4(b),
uni122(t2s)lk

; uni
1 2k (mod 2k11). The remainder of the proof parallels the

proof of Lemma 4.5.

LEMMA 4.11. Suppose that either k . t, 0 , t , s, and d is even or t .
0, k . t, s is undefined, and d is even. Then n(2k11, d) 5 n(2k, d).
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Proof. By Theorem 3.1(c), lk 5 2k2t. By Proposition 2.4(b), uni1lk
;

uni
1 2k (mod 2k11).

As in Lemma 4.3, we can choose distinct ai [ hni, ni 1 lkj such that
uai

; (mod 2k11). Therefore n(2k11, d) $ n 5 n(2k, d).
The same argument, with d 1 2k in place of d, yields

n(2k11, d 1 2k) $ n(2k, d 1 2k) 5 n(2k, d).

As in Lemma 4.3, the lemma follows from the two preceding inequalities
and (4.1). n

LEMMA 4.12. Suppose that k . max(r 1 2, t), 0 , r # t, and d is even.
Then n(2k11, d) 5 n(2k, d).

Proof. By Theorem 3.1(d), lk 5 2k2r. By Proposition 2.4(b),
uni122(t2r)lk

; uni
1 2k (mod 2k11). The remainder of the proof parallels the

proof of Lemma 4.5.

LEMMA 4.13. Suppose that either k . t 1 1, 0 , t , r, and d is even or
t . 0, k . t 1 1, r is undefined, and d is even. Then n(2k11, d) 5 n(2k, d).

Proof. By Theorem 3.1(e), lk 5 2k2t. By Proposition 2.4(b), uni1lk
;

uni
1 2k (mod 2k11).

As in Lemma 4.3, we can choose distinct ai [ hni, ni 1 lkj such that
uai

; d (mod 2k11). Therefore n(2k11, d) $ n 5 n(2k, d).
The same argument, with d 1 2k in place of d, yields

n(2k11, d 1 2k) $ n(2k, d 1 2k) 5 n(2k, d).

As in Lemma 4.3, the lemma follows from the two preceding inequalities
and (4.1). n

Now, we turn to the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.2. First note that if t 5 0, then the proposition
follows from Lemma 4.3.

Next, suppose that r, s, and t are all defined. If s 5 0 then r . 0 and
there are two cases: either 0 , r # t and the proposition follows from
Lemmas 4.7 and 4.12 or 0 , t , r and the proposition follows from Lemmas
4.8, 4.9, and 4.13. If s . 0 then there are two additional cases: either 0 ,
s # t and the proposition follows from Lemmas 4.4 and 4.10 or 0 , t , s
and the proposition follows from Lemmas 4.5, 4.6, and 4.11.

Now, suppose that t is defined and t . 0, but that r is not defined. Then
the proposition follows from Lemmas 4.9 and 4.13.

Finally, suppose that t is defined and t . 0, but that s is not defined.
Then the proposition follows from Lemmas 4.6 and 4.11.
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Finally, we prove Theorem 4.1.

Proof of Theorem 4.1. Assume the hypotheses of Theorem 4.1. By
Theorem 4.2, for all sufficiently large k,

V(2k11) 5 hn(2k11, d) u 0 # d , 2k11j

5 hn(2k11, d) u 0 # d , 2
k
j < hn(2k11, d 1 2k) u 0 # d , 2kj

5 hn(2k, d) u 0 # d , 2kj < hn(2k, d) u 0 # d , 2kj

5 V(2k) < V(2k) 5 V(2k).

Thus V(2k11) 5 V(2k), as desired. n

5. ADDENDUM

As we noted after (2.1), the parameters r, s, and t are not always defined.
In particular, t is not defined when a 5 0, r is not defined when b 5 1, and
s is not defined when b 5 21. By Theorem 4.1 the sequence huij is stable
when a ? 0 and either b 5 1 or b 5 21. For completeness we consider
here the case that a 5 0. As we will show, for most values of b these
sequences are not stable.

Suppose that a 5 0, so that t is not defined. Clearly the sequence huij
has the form

(5.1)0, 1, 0, b, 0, b2, 0, b3, . . . .

If b 5 61, stability of the resulting sequences is obvious: a single period
of the sequence modulo 2k is either 0, 1 (if k 5 1 or b 5 1) or 0, 1, 0, 21
(if k . 1 and b 5 21). Consequently V(2k) 5 of h0, 1j for all k $ 2 in the
first case and V(2k) 5 of h0, 1, 2j for all k $ 2 in the second.

If b ? 61 the period lk and the frequency distribution function n(2k, d)
depend upon the multiplicative order of b modulo 2k. On the other hand,
if b ? 61 then r and s are defined and the multiplicative order of b modulo
2k can be computed in terms of r and s.

THEOREM 5.1. Suppose that a 5 0 and b ? 61.

(a) If s . 0 and k . s then lk 5 2k2s.

(b) If r . 0 and k . r then lk 5 2k2r.

Proof. We prove (a) and (b) simultaneously. Let , be the multiplicative
order of b modulo 2k. Then it is clear from (5.1) that lk 5 2,.

Now, the group of units modulo 2k is a 2-group, so, by Lagrange’s theo-
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rem, the order of b is a power of two. Moreover, an easy inductive argument
shows for all j $ 0 that 2s1j11 i b2 j

2 1 under hypothesis (a) and for all
j $ 1 that 2r1j11 i b2 j

2 1 under hypothesis (b). Therefore , 5 2k2s21 and
, 5 2k2r21 are the least powers of b such that b, ; 1 (mod 2k) under
hypotheses (a) and (b), respectively. n

THEOREM 5.2. Suppose that a 5 0 and b ? 61.

(a) If s . 0 and k . s then n(2k, 0) 5 2k2s21, n(2k, b j ) 51 for all j,
and n(2k, d) 5 0 otherwise.

(b) If r . 0 and k . r then n(2k, 0) 5 2k2r21, n(2k, b j ) 5 1 for all j,
and n(2k, d) 5 0 otherwise.

Proof. As in Theorem 5.1, let , be the multiplicative order of b modulo
2k. Then the powers of b below , have distinct nonzero residues modulo
2k, and it follows that n(2k, bd) 5 1 for all d. Moreover, it is clear from
(5.1) and Theorem 5.1 that n(2k, 0) 5 2k2s21 and n(2k, 0) 5 2k2r21 under
hypotheses (a) and (b), respectively. Finally, in both cases it follows from
(5.1) that n(2k, d) 5 0 when d is neither 0 nor a power of b. n

COROLLARY 5.3. If a 5 0, then huij is stable when b 5 61 and is not
stable for all other odd b.
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