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INFINITE BRANCHES OF THE PHI-TREE

ELIOT T. JACOBSON AND ALAN E. PARKS
Department of Mathematics, Ohio University. Athens, OH 45701

Let ¢ denote Euler’s totient function. We make the set # of integers greater than 1 into the
vertices of a directed graph, connecting x € ¢ with an arrow “pointing down to” ¢(x). For
x €_¢ with x > 3, the sequence x, ¢(x), ¢>(x),... eventually reaches 2, hence 2 is the unique
minimal element of _¢. Thus, # is a tree under this structure, the Phi-tree. This idéa is due to

. H. Shapiro [1].

For x, y € #, we say that y is above x if there is a directed path from y to x (of course, y is

above x if ¢ (y) = x for some positive integer k). Although the. Phi-tree is easily constructed,
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one may appreciate the difficulty of predicting for given x which y lie above it by trying to find
the 77 elements above x = 40, for example. Surprisingly, it is easy to determine which x have
infinitely many elements of # above them, given our main theorem.

An even integer of the form 2°3/ will be called a 2, 3-number.

THEOREM. The integer x = 2 has infinitely many elements of the Phi-tree above it if and only if x
is a 2, 3-number.

We will give the proof in a sequence of lemmas, beginning with the observations for positive
integers e, f that ¢(2°3/) = 2¢- 3/~! and that $(2°) = 2°~'. From this the following is clear.

LEMMA 1. If x is a 2,3-number, then there are infinitely many elements of the Phi-tree above x.
Furthermore, every element below x is a 2,3-number.

Of course we have just established one direction of the theorem.
For an integer y define »(y) to be the exponent of 2 in the prime factorization of y. The idea
of the rest of the proof is to keep track of the sequence v(y), »($(y)), »(¢*(¥)),. - . -

LEMMA 2. Let y € £ not be a power of 2. Then v(y) < v(¢(y)) with equality implying that
y = 2°p’/, where e, [ are positive integers and p is a prime with p = 3(4). If, in addition,
v(y) = v($*(»)), and y is not a 2,3-number, then f = 1.

Proof. Let p be an odd prime divisor of y and write y = 2°p/m, where p + m and e = »(y).
Then . '

o1
v(9(») =»(6(2)p/ '(p - Do(m)) = V(Q(Z")p"' -2?-"2-— -¢(m))

= IS T ,( d ) +v((m)).
But v($(2¢)) > e — 1 with equality provided e > 1. Thus
v(¢(y)) 2e=1+1=w(y)

: 1
as claimed. If »($(y)) = »(y) then »(¢(2°)) = e — 1,sothat e > 1. Also » 4 = 0, so that

p = 3(4), and finally »(¢(m)) = 0 so that m = 1, since m is odd. This completes the proof of the
first assertion.

For tﬁe second assertion, assume that y = 2°p/, where p is a prime with p = 3(4). If y is not
p=1
a 2,3-number, then p = 3(4) implies p > 7 and so (p — 1)/2 > 3, whence 2 ¢(_—:‘2—_) But also

(p — 1)/2 is odd, and so in the calculation .-

¢(y)=2"-p"1-(£;),

the factors 2¢, p/~!, and (p — 1)/2 are pairwise coprime. Thus

#0) = #@)9(p )8 257

and

;(4,1(),)): e—1+v(o(p/™) + "(‘P(f'“;—l)]

>e—1+v(o(p/ ") +122(y) +v(e(p/)).
If now »(¢*(y)) = »(y), then we must have »(¢(p’/~')) = 0, whence f = 1.
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The next result, which is fairly well known, we include for the sake of completeness.
LEMMA 3. For x € ¢ the set { y|¢(y) = x} is finite.

Proof. If ¢(y) = x and if p° is a prime power divisor of y, then p*~'(p — 1) divides x. It
follows that p < x + 1 and that

e<log,(x)+1<log,(x)+1.
A rather crude bound -

y < [(I h 1)1110321‘.\’!1-1
follows, and the lemma is thereby proved.

LEMMA 4. Let x € f have infinitely many elements of the Phi-tree above it. Then there is an
infinite sequence a, of integers with a, = x and $(a,) = a,_, forall i > 2.

Proof. Elementary graph theory: Assume for n > 1 that 4, = x, a,,..., a, have been con-
structed with ¢(a,) = a,_, for i > 2 and with a, having infinitely many elements of the Phi-tree
above it. By Lemma 3 the set { y|¢(y) = a,,} is finite, and so some such y has infinitely many
elements above it. Put g, ,, = y. Continuing in this way we obtain our sequence.

LEMMA 5. Let x € _# have infinitely many elements above it. Then x is a 2,3-number.

Proof. Given such x, construct a sequence a,, as in Lemma 4. If x is not a 2, 3-number, then
by Lemma 1, none of the a, is a 2, 3-number. By Lemma 2

v(a) 2v(ay) > ---.

Thus there is some n > 1 for which ‘
v(a,) =v(a,,,) foral k>0.
For k > 2, we have
v(a,.4) = ¥(a,.4-2) = 7(¢7(a,.4)),
and so by Lemma 2, '
a,,, =2%p, fork>2,

“where ¢, > 1 and p, is a prime with p, = 3 (mod 4). Now

2%y = ay g = ¢(a,.,) = Z“Paz" : ;
from which we conclude that
pi =1
2 = Px-1-
Thus, p; = 2p,_, + 1, and it follows from induction that
(1) pi=2"%p,+1) -1 fork>2.

Since the p, are odd primes, put k = p, + 1 in (1) so that
pi=27"(p, +1) = 1=0(mod p,),

so then p, = p,, a clear contradiction to (1). This completes the proof of the lemma and the
theorem.
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