INFINITE BRANCHES OF THE PHI-TREE

ELIOT T. JACOBSON AND ALAN E. PARKS
Department of Mathematics, Ohio University. Athens, OH 45701

Let ϕ denote Euler's totient function. We make the set $\mathscr F$ of integers greater than 1 into the vertices of a directed graph, connecting $x \in \mathscr F$ with an arrow "pointing down to" $\phi(x)$. For $x \in \mathscr F$ with $x \ge 3$, the sequence $x, \phi(x), \phi^2(x), \ldots$ eventually reaches 2, hence 2 is the unique minimal element of $\mathscr F$. Thus, $\mathscr F$ is a tree under this structure, the *Phi-tree*. This idea is due to H. Shapiro [1].

For $x, y \in \mathcal{J}$, we say that y is above x if there is a directed path from y to x (of course, y is above x if $\phi^k(y) = x$ for some positive integer k). Although the Phi-tree is easily constructed,

one may appreciate the difficulty of predicting for given x which y lie above it by trying to find the 77 elements above x = 40, for example. Surprisingly, it is easy to determine which x have infinitely many elements of \mathcal{J} above them, given our main theorem.

An even integer of the form 2^e3^f will be called a 2,3-number.

THEOREM. The integer $x \ge 2$ has infinitely many elements of the Phi-tree above it if and only if x is a 2,3-number.

We will give the proof in a sequence of lemmas, beginning with the observations for positive integers e, f that $\phi(2^e3^f) = 2^e \cdot 3^{f-1}$ and that $\phi(2^e) = 2^{e-1}$. From this the following is clear.

LEMMA 1. If x is a 2,3-number, then there are infinitely many elements of the Phi-tree above x. Furthermore, every element below x is a 2,3-number.

Of course we have just established one direction of the theorem.

For an integer y define $\nu(y)$ to be the exponent of 2 in the prime factorization of y. The idea of the rest of the proof is to keep track of the sequence $\nu(y)$, $\nu(\phi(y))$, $\nu(\phi^2(y))$,...

LEMMA 2. Let $y \in \mathcal{J}$ not be a power of 2. Then $v(y) \leq v(\phi(y))$ with equality implying that $y = 2^e p^f$, where e, f are positive integers and p is a prime with $p \equiv 3(4)$. If, in addition, $v(y) = v(\phi^2(y))$, and y is not a 2,3-number, then f = 1.

Proof. Let p be an odd prime divisor of y and write $y = 2^e p^f m$, where p + m and $e = \nu(y)$. Then

$$\nu(\phi(y)) = \nu(\phi(2^e) p^{f-1}(p-1)\phi(m)) = \nu(\phi(2^e) p^{f-1} \cdot 2 \frac{p-1}{2} \cdot \phi(m))$$
$$= \nu(\phi(2^e)) + 1 + \nu(\frac{p-1}{2}) + \nu(\phi(m)).$$

But $\nu(\phi(2^e)) \ge e - 1$ with equality provided $e \ge 1$. Thus

$$\nu(\phi(y)) \geqslant e - 1 + 1 = \nu(y)$$

as claimed. If $\nu(\phi(y)) = \nu(y)$ then $\nu(\phi(2^e)) = e - 1$, so that $e \ge 1$. Also $\nu\left(\frac{p-1}{2}\right) = 0$, so that p = 3(4), and finally $\nu(\phi(m)) = 0$ so that m = 1, since m is odd. This completes the proof of the first assertion.

For the second assertion, assume that $y = 2^e p^f$, where p is a prime with p = 3(4). If y is not a 2,3-number, then p = 3(4) implies $p \ge 7$ and so $(p-1)/2 \ge 3$, whence $2\left|\phi\left(\frac{p-1}{2}\right)\right|$. But also (p-1)/2 is odd, and so in the calculation

$$\phi(y) = 2^e \cdot p^{f-1} \cdot \left(\frac{p-1}{2}\right),\,$$

the factors 2^e , p^{f-1} , and (p-1)/2 are pairwise coprime. Thus

$$\phi^{2}(y) = \phi(2^{e})\phi(p^{f-1})\phi\left(\frac{p-1}{2}\right)$$

and

$$\nu(\phi^{2}(y)) = e - 1 + \nu(\phi(p^{f-1})) + \nu(\phi(\frac{p-1}{2}))$$

$$\geq e - 1 + \nu(\phi(p^{f-1})) + 1 \geq \nu(y) + \nu(\phi(p^{f-1})).$$

If now $\nu(\phi^2(y)) = \nu(y)$, then we must have $\nu(\phi(p^{f-1})) = 0$, whence f = 1.

The next result, which is fairly well known, we include for the sake of completeness.

LEMMA 3. For $x \in \mathcal{J}$ the set $\{y | \phi(y) = x\}$ is finite.

Proof. If $\phi(y) = x$ and if p^e is a prime power divisor of y, then $p^{e-1}(p-1)$ divides x. It follows that $p \le x + 1$ and that

$$e \leq \log_n(x) + 1 \leq \log_2(x) + 1.$$

A rather crude bound

$$y \leq [(x+1)!]^{\log_2(x)+1}$$

follows, and the lemma is thereby proved.

LEMMA 4. Let $x \in \mathcal{J}$ have infinitely many elements of the Phi-tree above it. Then there is an infinite sequence a_n of integers with $a_1 = x$ and $\phi(a_i) = a_{i-1}$ for all $i \ge 2$.

Proof. Elementary graph theory: Assume for $n \ge 1$ that $a_1 = x, a_2, \ldots, a_n$ have been constructed with $\phi(a_i) = a_{i-1}$ for $i \ge 2$ and with a_n having infinitely many elements of the Phi-tree above it. By Lemma 3 the set $\{y|\phi(y)=a_n\}$ is finite, and so some such y has infinitely many elements above it. Put $a_{n+1} = y$. Continuing in this way we obtain our sequence.

LEMMA 5. Let $x \in \mathcal{J}$ have infinitely many elements above it. Then x is a 2,3-number.

Proof. Given such x, construct a sequence a_n as in Lemma 4. If x is not a 2, 3-number, then by Lemma 1, none of the a_n is a 2, 3-number. By Lemma 2

$$\nu(a_1) \geqslant \nu(a_2) \geqslant \cdots$$

Thus there is some $n \ge 1$ for which

$$\nu(a_n) = \nu(a_{n+k})$$
 for all $k \ge 0$.

For $k \ge 2$, we have

$$\nu(a_{n+k}) = \nu(a_{n+k-2}) = \nu(\phi^2(a_{n+k})),$$

and so by Lemma 2,

$$a_{n+k}=2^{e_k}p_k\quad\text{for }k\geqslant 2,$$

where $e_k \ge 1$ and p_k is a prime with $p_k \equiv 3 \pmod{4}$. Now

$$2^{e_{k-1}}p_{k-1}=a_{n+k-1}=\phi(a_{n+k})=2^{e_k}\frac{p_k-1}{2},$$

from which we conclude that

$$\frac{p_k-1}{2}=p_{k-1}.$$

Thus, $p_k = 2p_{k-1} + 1$, and it follows from induction that

(1)
$$p_k = 2^{k-2}(p_2 + 1) - 1 \quad \text{for } k \ge 2.$$

Since the p_k are odd primes, put $k = p_2 + 1$ in (1) so that

$$p_k = 2^{p_2-1}(p_2+1) - 1 \equiv 0 \pmod{p_2},$$

so then $p_k = p_2$, a clear contradiction to (1). This completes the proof of the lemma and the theorem.

Reference

1. H. Shapiro, An arithmetic function arising from the φ function, this MONTHLY, 50 (1943) 18-30.