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Let Uy, Uy, A, B be integers and define, for n > 2,
U)‘l = AUH—I g BUVL—Z'

For an integer m > 1, the sequence (U,) considered modulo m is eventually peri-
odic. We say (U,) is uniformly distributed modulo m [notation: u.d.(mod m)] if
every residue modulo m occurs with the same frequency in any period. 1In this
case, it is clear that the length of any period will be a multiple of .
Conditions that (U,) be u.d.(mod m) can be found in [2, Theorem A]l. Suppose
(Un) is u.d.(mod pk) where p is a prime and k > 0. Let ¥ > 2 be any integer.
We study the relationship between the distribution of Un (mod M) and U, (mod
M+ pX). For integers ¥ = 2 and 0 < ¢ < N, denote by v(#, ¢) the number of times
that ¢ occurs as a residue in one shortest period. of U, (mod N). Our main
result can now be stated.

Theorem: Let p be a prime and ¥ > 0 be an integer such that 0, is u.d.(mod
p*). Say U, has shortest period of length pXf modulo pk. ©Let ¥ = 2, and
assume that U, is purely periodic modulo M, with shortest period of length @.

Assume p[Q. Then, for any 0 < g < ¥, and 0 < b < M+ pk with b = a (mod M),

I
@
We remark that ( , ) denotes the GCD. Also, observe that the hypothesis

plQ yields p[M. To prove the Theorem, we make use of a recent result of Vélez
[2], which we state here for the reader's convenience.

V(i pk, b) = cv(M, a).

Lemma: Suppose that Up is u.d.(mod pk) with shortest period of length pkf.
Then, for any integer s = 0, the sequence Us+gps ¢ =0, 1, ..., pk-1, consists
of a complete residue system modulo pk.

Proof of Theorem: Let 0 < g < ¥ and let v(M#, a) = d. As the Theorem is vacu-
ous if d = 0, assume d 2 1. Let Wys Wy, ..., W; be all of the integers 0 <
Wi < ¢ such that Uy = a (mod M). Let 0 < b < M+pk, say b = » (mod p%) with
0 <r <pk. Assume b = @ (mod ¥). Note that Un has period length

I
4 @ N
For ease of notation, we set z = /g, ). As (M, pk) =1, it suffices, by the
Chinese Remainder Theorem, to show that the system

{a (mod M)

m

* @ pk modulo ¥ - pk.

LCM(Q, fp)

(@D U, =
r (mod pk)

has exactly z+d solutions, 0 S n < z+Q- pk.
We begin by producing, for each w;, solutions vy, vy, ..., v;, of the sys-
tem. Fix 7. Then
Up.+eq¢ = a (mod M) for all 0 < e < z - pk - 1.
Let 0 < s5) < 8;p < +v0 < 87z < f be all of the distinct integers such that
= 25, (mod (g, ).

Wi = 871 = 842
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By Vélez's lemma, there exist integers 0 S Gyys Gyp0 09 G4 S p% -1 such that
Us ,4q..; % 7 (mod p<), for all j
Then, also, fof any 0 < ¢t < 4/(g, f) - 1, we have
Uz a(gavip)f 20 (mod p~) .
The bounds on e, t guarantee that these subscripts are less than 3+ & p*. For
each i, j, we seek e = e,;, t = t;; in these bounds such that

“d

w; t e @ =8 + (gt t, 0N
fim

Write s:: - w; = (&, Note that since <z- DX, ?75173> =1, the linear
congruence W J
. @
tezeph = =(m;s + q;i2) <mod —774——>
“ v @
has a unique solution t = %;: with 0t <77 -~ 1. But then

@ n

@, Hm; + q;:3 + tij* 3 p%);
thus, since (§, z+ @-p%) = @, the linear congruence
et = (&, f)(mﬁj +q;:5 + téJ' e <) (mod 2 Q- p )

has & solutions 0 < 2 < z+ g~ pf‘. Hence, this congruence has a unique solution

e = e satisfying 0 < ¢;; < z2° p% - 1. With these values of e, t;; » we have

w; +e;;§ = sy + (ql_ + ¢, pX)f (mod 2+ g° p*),

iJ
so equallty holds, since both sides are less than z - & « pk. Set v;;=w; + eﬂ_Q
for all ©, j. Then 0 < v;; < z-&° p\ and each v;; is a Subscrlpt that satis-
fies the system (1), that is, U,.. = b (mod M- ‘) for all 7, j. We claim that
the v;; are distinct. N

Suppose that v;; = vgi. Then w; + e;:4 = wg t eyn) implies Q|'(wi - wg). As
0 < w;, w; < &, this gives w; = Wy, ‘so that 7 = g. Then
sii + (g + tpOF = su + (@ + EspOS
so that f|(aL/ - 8:.). As 0 <855, 8 < f, we have that s;; = 8;;; therefore,
7 = h. Thus, the v;; are distinct. This shows that, for any 0 s a < # and any
0 <b < M- pk, v(Me p& b) 2 z+v(¥4, a). The proof is concluded by observing
that

ot

Hepk-1, ¥ 2=l px-} a (mod )

z+ Q- pk 3 v(M e« pk,~b) = 3, 3o v(Hepk, b), where b = A
=0 a=0 r=0 r (mod pX)

[\

el o Bl
Z: E: z+v(H, a) = g+ pk 2: v(M, a) = z-pk-q.
a=0 =

Hence, equality holds throughout, and the Theorem follows. [J

Example: Let A =B =1, Uy =0, Uy =1 so that U, is the Fibonacci sequence.
Then U, is u.d.(mod 5). Take X = 33. Then U, has period of length & = 40 mod-
ulo 33, and one computes that v(33, 1) = 5, whereas v (165, 1) = 3. This justi-
fies the hypothesis that pI Moreover, in this case, v (33, @) assumes 5
values for 0 < a < 33, but v(165, b) assumes only &4 values for O < b < 165.

In fact, our Theorem asserts that U, has the same number of distinct dis-
tribution frequencies modulo # and //- pk, whenever 4, p satisfy the hypotheses
of the Theorem [that is, v(M#, =) and v(¥ «pX, %) take on the same number of

distinct values]. This provides an alternate method of obtaining the results
in [1]..
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~

Note that the "purely periodic" hypothesis of the Theorem can be omitted if
one substitutes asymptotic density for frequency, as the finite number of terms
before U, becomes periodic modulo / do not affect density. Our final result is
well known but illustrates the Theorem's power.

Corollary: Suppose that U, is u.d.(mod p%) and is u.d.(mod ¥), where p is a
prime that does not divide the length of the period of U, (mod #). Then U, is
u.d. (mod M- pk).
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*kok ok

Masaryk University in Brno, Czechoslovakia, is the only university in the country
which subscribes to the Fibonacci Quarterly. Unfortunately, their set is not com-
plete. They need volumes 1-9. If anyone would be interested in donating these
volumes to Masaryk University please let the editor of this journal know and he
will make arrangements.
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