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1. INTRODUCTION 

Suppose a number field K is arithmetically equivalent (defined below) to 
a radical extension Qcn&). What can be said about K? If K is assumed to 
be a radical extension, then K is classified by the results in [E. Jacobson 
and W. Y. Vklez, Arch. Math. 45 (1985), 12-201. The purpose of this paper 
is to obtain a complete classification of such fields K. 

First of all, if 8 1 n then we prove that K and Q(‘&) are isomorphic (see 
Theorem 3.lc, Theorem 5.1, and Corollary 5.4). For the general case, write 
n = 2em, where e > 3 and m is odd. In Theorem 5.1 we show that K is the 
compositum K = LM, where L and M are arithmetically equivalent to 
Q(*‘&) and Qcm&), respectively. Owing to Theorem 5.3, which shows 
that M and Qcm,/-) Q are isomorphic, this effectively reduces the problem to 
the case n = 2”. Theorem 3.1 offers a complete classification of the fields L 
that arise, and thus all K are classified. 

Finally, the exceptional case that occurs in Theorem 3.lb demonstrates 
that the work in [Jacobson and Vtlez, 19851 is not suflicient: a non-radical 
extension and a radical extension can be arithmetically equivalent. 
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2. GENERALITIES AND RADICAL EXTENSIONS 

We begin by reviewing some definitions and results. 
Two number fields K,, Kz are arithmetically equivalent if their zeta func- 

tions coincide. A number field K is solitary if the only fields arithmetically 
equivalent to K are those that are isomorphic to K. 

For a finite group G and subgroups H,, H2 of G, we say that HI, Hz are 
Gassmann equivalent if 1 H, n cl,(x)1 = 1 H2 n cl,(x) 1 for every conjugacy 
class cl,(x) of G. The following result is included for ease of reference; it 
indicates the variety of disparate areas connected by the concepts defined 
above. 

THEOREM 2.1. Let K, , K2 be algebraic number fields, and Sz any Galois 
extension of Q containing K, and Kz. Denote G = Gal(S2/Q), 
Hi = Gal(SZ/Ki), i = 1,2. Then the following are equivalent. 

(a) K,, Kz are arithmetically equivalent. 

(b) H, , Hz are Gassmann equivalent. 

(c) The permutation characters 1 z,, l& are equal. (Zn particular, 

IH,I = IHzI.1 
(d) For every prime p of Z which is unramified in K1 K2, we have 

K, Qo Q,, r K2 Qo Qp as Q,-algebras. 

Proof The equivalence of (a), (b), and (d) appears in [4 J. The 
inclusion of condition (c) arises from the elementary formula: 

lgi(x)= (HiI-I. I C,(x)1 * lHincl&x)l, 
where C,(x) is the centralizer of x in G. 1 

Most recently, condition (c) has been studied for large subgroups of 
simple groups in [l, 2). 

In the remainder of this paper we use and abuse the abbreviations g.e. 
for “Gassmann equivalent” and a.e. for “arithmetically equivalent.” The 
following appears in [4]. 

THEOREM 2.2. Let K,, K2 be a.e. number fields. Then K,, Kz have the 
same Galois closure (notation: RI = Kz) and the same normal core. 
Moreover, if Gal(Ki/Ki) is cyclic, then Ki is a solitary field (K, z Kz). 

For the remainder of this section we set the following notation. For 
the irreducible binomial ~“-a over Q we denote Sz = Qcfl&, [,), 
G= Gal(S2/Q), H= Gal(s2/Q(n&)). If K denotes a field a.e. to Qcn&), 
then Kc Sz and we set J= Gal(LZ/K). 
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Theorem 2.1 allows us to translate questions about arithmetic equiv- 
alence to questions about Gassmann equivalence in group theory. We 
employ this tactic quite frequently. Thus, it is convenient to give a 
workable description of G. 

Let C, denote the cyclic additive group of integers modulo n, and C,* the 
multiplicative group of integers prime to n. Define a binary operation on 
the set C, x C,* via 

(4 u). (A 0) = (a + P% uv). 

Then C, x C,* is a group with identity (0, 1) and inverses given by the rule 
(a, 24-l =(-au-l, 2.4-l ). This group is frequently called the holomorph of 
C”. 

There is a natural embedding of G above into C, x C,* arising as follows. 
Given cr E G, we have a(‘&) = 5; . “4 and a([,) = [i (where c,, denotes 
a primitive nth root of unity) for some integers c(, U. Then rr N (a, U) is a 
monomorphism. We identify G with its image in C, x C,* under this 
monomorphism. We now give the basic group theoretic description of 
subgroups of G that are Gassmann equivalent to H. 

Let T= Gal(Q(c,)/Q(“&) n Q([,)) viewed as a subgroup of C,*. Then 
it is easy to see that H = { (0, u): u E T > and that H is abelian. 

LEMMA 2.3. Let G, H, T be as above and suppose that 56 G is g.e. to H 
in G. Then J = { (w,( 1 - u), u) : u E T} for some integers w,. Moreover, J is 
abelian. 

Proof: Fix (0, U)E H and let (a, V)E G. Then (~1, v)(O, ~)(a, v)~’ = 
(a( 1 - u), u), and hence cl,( (0, u)) = { (a( 1 - u), u): a E C,}. Since clearly 
1 Hncl,((O, u))l = 1, by hypothesis we have that (Jncl,((O, u))l = 1 for 
each u E T. Since 1 H I= 1 J 1; J is as described. Finally, for U, v E T we have 

(w,(1-U),U)~(w”(1-v),v)=(w,(1-U)+U~w”(1-v),Uv) 

(W”( 1 - v), v) (w,( 1 - U), U) = (W”( 1 - v) + 0. w,( 1 - u), vu). 

However, J contains exactly one element whose second component is 
uv = VU, so these two must be equal, thus J is abelian. 1 

We finish this section by quoting some useful results on radical exten- 
sions (see [5]). 

THEOREM 2.4. Let n > 2 and suppose that xn - a, x” - b are irreducible 
over Q. Then 
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(a) QV&)n Q(L)=Q("&),for mm $30. 
(b) The quadratic subfields of Q([,e) (e> 3) are Q(c4), Q(G), and 

Q(J-2). 

(~1 Q(‘$& Q(n,h are a.e. if and only IY one of the following holds: 

(i) a = b’c” with c E Q and (i, n) = 1; or 

(ii) 81n anda=b’c”2”‘* with CEQ and (i,n)=l. 

(d) Q&h, Q&‘% are isomorphic $and only if one of the following 
holds : 

(i) a=b’c” with CEQ and (i,n)=l; or 

(ii) 81nand-a, -b~Q2,anda=bic”2”‘*withc~Qand(i,n)=1. 

3. THE CASE n = 2’ 

Fix an irreducible binomial x2’ - a over Q. This section is devoted to the 
classification of fields arithmetically equivalent to Q(*C/;;). As agreed in 
the previous section, we denote s2 = Q( *‘A, c2e), G = Gal(SZ/Q), 
H = Gal(SZ/Q( *‘&)), and Q( “‘&) n Q(ize) = Q( “&) for some s > 0. We 
now state the main theorem of this section. 

THEOREM 3.1. Let x2’ - a be irreducible over Q and write 
Q( “&) n Q([2e) = Q( ‘$4). Let K b e a number field arithmetically 

equivalent to Q( “4). 

(a) If e 2 3 and s = 0, then K is isomorphic to either Q(“,,&) or 

Q(“&- $1. 
(b) If e 34, s= 1, and Q(‘“&) = Q(h), then K is isomorphic to 

either Q(*‘,,&) or Q( *‘&. ,/a). Furthkrmore, Q(*‘,,& . Jm) is 
not a radical extension. 

(c) In all other cases, Q( “&) is a solitary field. 

The proof is completed in a sequence of cases. First observe that if H is 
cyclic then by Theorem 2.2, Q(*‘J) a is a solitary field. If sa 2, then 
c4 E Q(*‘&), so (Y4 E Q(‘“&). However, Q(i,e)/Q(c,) is cyclic, thus H is 
cyclic. Also, H is cyclic if e < 2, or if e = 3 and s = 1. Thus in the following 
we may assume that 

eZ3,s<l,andife=3thens=O. 

Case 1. e 2 3 and s = 0. In this case, G I--+ C,, x C$ is an isomorphism. 
Now for ea 3 it is well known that C$ is generated by the residues 
- 1, S(mod 2’). It follows that H is generated by the pairs (0, -l), (0, 5). 
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LEMMA 3.2. In the situation of Case 1, if J 6 G is g.e. to H, then J has 
generators (a, 5), (/I, - 1 ), where cx- 0 (mod 4), fl z 0 (mod 2) and 
2a E -4/? (mod 2’). 

ProojI As - 1, 5 generate C$, the definition of multiplication in G 
together with Lemma 2.3 shows that J has as generators elements 
(ws(l - 5) 5)= ( -4W5, 5)=(c1,5), and (~t-~(l-(-I)), -1)=(2w-, -1) 
= (b, - 1). So all assertions are clear except the final congruence. But J is 
abelian by Lemma 2.3, so that 

(4 5)(P, - ,)(a, 5))’ = (B, - 1). 

After some computation this yields (2a -I- 50, - 1) = (fl, - 1 ), so that 
2a + 5p E j? (mod 2’) as needed. 1 

LEMMA 3.3. In the situation of Case 1, there are at most 2’ subgroups 
J < G that are g.e. to H. 

Proof: Any such J has a generating set as described in Lemma 3.2, so 
it suffices to count generating sets. However, if (a, 5), (/I - 1) satisfy 
a E 0 (mod 4), p = 0 (mod 2), and 2a = -4p (mod 27, then clearly there 
are 2’-’ choices for p, and for each p there are exactly two choices for 
a. I 

LEMMA 3.4. In the situation of Case 1, if J< G is g.e. to H then 
1 N,(J)1 = 2’. In particular, J has 2’- ’ distinct conjugates in G. 

Proof. Say J has the generating set {(a, 5), (/?, - 1) > and let (q, 2) E G. 
Then (q, z) normalizes J iff it normalizes the generating set. 
Straightforward computation now gives that 

(q, Z)E N,(J) iff 
i 

-4q=a(l -z) (mod2’)and 

29 - /3(1 -z) (mod 2’). 

Since /I ~0 (mod 2), the second congruence has exactly 2 solutions: 
q = (p/2)( 1 - z), (/I/2)( 1 -z) + 2’- I (mod 29, for any choice of z. Thus the 
second congruence has exactly 2 .2’- I = 2’ solutions (q, z). 

As z is odd, observe that for any solution (q, z) to the second congruence 
we have 

-4yf -2fl(1 -z)- -4pii!jA~2a~=a(l-:) (mod 2’ ), 

so (q, z) is also a solution to the first congruence. Thus the system of 
congruences has exactly 2’ solutions, hence /N,(J)/ = 2’. Then 
[G: N,(J)] =2@-I, and the last assertion follows. 1 



232 JACOBSON AND VbLEZ 

Conclusion of Case 1. Let J<G be generated by {(2e-‘, 5), (0, -1)). 
Then J has fixed field Q( ‘&. $), w  ic is a.e. but not isomorphic to h’ h 
Q( “A), by Theorem 2.4 (since if --CL E Q2 then l4 E Q( “4) so s > 1). 
Thus J is g.e. to H, but not conjugate H. By Lemmas 3.3 and 3.4, there are 
exactly 2 conjugacy classes of subgroups of G that are g.e. to H, represented 
by Hand J. By Galois theory, there are 2 isomorphism classes of fields that 
are a.e. to Qc2;/-) a , re p resented by Q(2’&) and Qcze,,&. fi). It follows 
incidentally, by counting, that any generating set, as in Lemma 3.2, 
generates a subgroup of G that is g.e. to H. 

Note that if s = 1, then Theorem 2.4b applies. In this way, there are three 
cases when s= 1, e>4. 

Case 2. e 2 4, s = 1, and Q(2’&) = Q(G). In this case the image of G 
in C2* x C$ has index 2. We must compute this image exactly. By the 
equality Q(A) = Q(a) we have a = 2c2 for some CE Q. Hence 
$m;~l/c~($; is + ig’. Let cr E G correspond to (~1, U) E Cze x C$. We 

in two ways: 

Hence c;; + [gU = ,/?. (- 1)” and we have 

so G = ((a, U) E C2’ x C$: (CI, U) satisfies ( * )}. (Note that the given sub- 
group of C,, x Cg has index 2, hence must be all of G by counting.) With 
this description of G, we now have 

H= ((0, u): us 1,7 (mod 8)). 

Our analysis is analogous to Case 1, and we just sketch the details. 
If J<G is g.e. to H then J= {(w,(l -u), u): UE 1,7 (mod 8)) for some 

integers w,. As C$ is generated by -1, 5, it is easy to see that H is 
generated by (0, - 1) and (0, 52) = (0,25). Thus, J has generators (a, 25), 
(p, - 1) which in this case must satisfy the congruences p z 0 (mod 2), 
~13 0 (mod 8), and 2a E -248 (mod 2’). There are 2’ such pairs {(a, 25), 
(8, - l)} satisfying these congruences, hence at most 2’ subgroups of G are 
g.e. to H. 
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Now if J f G is g.e. to H and is generated by {(a, 25), (fl, - 1) > then 
(q, z) E G normalizes J 

iff 
- 241% a( 1 - z) (mod 2’) and 

2r1=fl(l--z)(mod2’). 

As z- 1 (mod 2) and fl= 0 (mod 2) it follows that q = 0 (mod 2) and 
hence by ( * ) that z = 1, 7 (mod 8). With these restrictions the second con- 
gruence has 2’-’ choices for z, and for each z there are exactly 2 q’s such 
that (v], z) is a solution. As before, a solution to the second congruence is 
also a solution to the first, hence 1 NJ J)I = 2+ I. It follows that 
[G: N,(J)] = 2’- ‘, so J has 2’+’ distinct conjugates. 

If now J is generated by {(2’-l, 25), (0, l)} then J has fixed field 
Q(“,/;;. (cl, + [;‘)) = Q(*‘& .,/q). If this J is conjugate to H then 
there exists (v, Z)EG such that 

i 

(17, _7)(2+ ‘, 25)(~, z)- ’ = (0,25) and 

(q,z)(O, -l)(q,z)-‘=(O, -1). 

Thus 

i 

24~ = 2’- ‘2 (mod 2’) and 
21~ 0 (mod 2’). 

But 2~ = 0 (mod 2’) gives also 24~ E 0 (mod 2’), whereas z z 1 (mod 2) 
gives 2’- ‘.z & 0 (mod 2’). Hence there can be no solution (q, z). By 
counting, J and H represent the two conjugacy classes of subgroups of G 
that are g.e. to H. Hence Q(“&), Q(*‘& Jm) are the 
isomorphism classes of fields a.e. to Qc2’&). 

If Q(2P&.Jm) 

Q("'& Gp) 

were a radical extension, then by Theorem 2.4, 
is isomorphic to either Qc2’$) or Qc2’&. &). 

However, 4 E Q( “&) by assumption, hence these last two fields are 
equal. Since we just saw that Q(“&. ,/q) is not isomorphic to 

Q(“&), it follows that Q(*‘&. dq) is not a radical extension. 

Case 3. e B 4, s = 1, and Q(“&) = Q(n). In this case G 
corresponds to the pairs (a, U) in C,, x CT, that satisfy 

{ 

a=O(mod2)0u=t,3(mod8) 
a=1 (mod2)0u=5,7(mod8) 

and H corresponds to ((0, u): U- 1,3 (mod S)}. Now -5 has order 2’-2 
in Cg and (0, -5) E H. As also I H 1 = 2eP2, we have that H is cyclic, 
generated by (0, -5). Thus by Theorem 2.2, Q(2e&) is a solitary field. 
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Case 4. e > 4, s = 1, and Q(G) = Q(i4). In this case H is cyclic. 
Indeed, one computes that G = { (~1, u): 2a - 3 + u (mod 4)) and therefore 
H= ((0, u): u= 1 (mod4)). Hence H= ((0, 5)). 

These cases finish the proof of Theorem 3.1. 1 

4. A REDUCTION 

In this section we address a special case of the following question. 
Suppose that K1, K2 are arithmetically equivalent number fields and that 
K,=LIM,, where L,nM,=Q and ([L,:Q], [M,:Q]),,,=l. Does K2 
contain subfields L,, M, such that K2 = L2Mz and {L,, L,}, (M,, M2) 
are sets of arithmetically equivalent fields? 

We are not able to answer this question entirely, though we give some 
positive results (see Theorem 4.5). Our interest in this question comes from 
the case when n = 2em, m odd, K, = Q(“,,&), L, = Q(2e,,&), MI = Qcm&). 
In this specific case, Theorem 4.5 is sufficient to guarantee the existence of 
the two fields Lz and M,. 

In the next four lemmas, G denotes an arbitrary finite group. 

LEMMA 4.1. Suppose H, , H2 < G are g.e. in G. If N =ZI G then H, n N g.e. 
H, n N in G. 

Prooj If x E G then either cl,(x) E N or else c1Jx) n N = $3. Hence in 
either case, I H1 n Nn cl,(x)1 = ( H, n N n &(x)1. 1 

LEMMA 4.2. Let Cl <G and H,, H, < G,. Zf H, g.e. H, in G,, then H, 
g.e. H, in G. 

Proof: By assumption, 12, = lzz. By transitivity of induction, 
1;, = (l$)G= (lZ*)“= l& 1 

LEMMA 4.3. Suppose that G= G, x G2 and that H, ,< G can be written 
H, = H,, x H12, where H,, 6 G,, H,, d Gz. Let H2 <G and assume that H, 
g.e. H, in G. Then there are subgroups H,, < G,, H,, < G2 such that 
H2 = H,, x Hz2, and furthermore H,, g.e. Hz1 and HI2 g.e. H22 in G. 

ProoJ: Every conjugacy class clG(y) of G has the form 
clG(y) = clGI(yI) x clG2(y2) (where y = (y,, y2)). Since H1 g.e. H2 it follows 
from Lemma 4.1 that H, n Gi g.e. H2 n Gi (i = 1,2). Set H,, = H2 n G,, 
H,, = H2 n G,. Plainly, Hli= H, n Gi (i= 1,2), and from the above we 
have )H1,l=lHZiI (i=1,2)and )H,I=IH,I.Then (H21>IH2,(.(Hz21= 
(H,,I.IH,,I=IHtl=(H,I, soequality holds, and H2=HzlxH2,. g 
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LEMMA 4.4. Suppose G= N, N, (internal direct product) and let A, 
Bd N, he such that A g.e. B in G. Then AN, g.e. BN, in G. 

Proof: Easy exercise. 1 

We can now state the result we are after. We first state the Galois 
theoretic version, and then translate to group theory to effect the proof. 
Recall that K denotes the Galois closure of K over Q. 

THEOREM 4.5. Suppose K,, K2 are number fields such that KI a.e. K2. 
Assume that there are subfields L,, M, of K, such that K, = L, M, and 
L,f7iV,&K,. 
Then 

and 

(L,.K,)nM,=K,nM, 

(M,.K,)nL,=K,nL,. 

Furthermore, there exist subfields &, J& of K, = K, such that 

(a) Q2 a.e. K,L, and A2 a.e. K, M, ; 

(b) i?,n&?,,&&n~, are subfields of K2; 

(c) Q3,n&f, a.e. K, n&i,, and Jt2nz, a.e. K, ne,; 

(d) K?=~!2nM,=(~!,nA,).(~~nE,). 

See Fig. 1. To translate this to group theory we need one definition. 
Given any H < G, we denote by Core,(H) = Core(H) the largest subgroup 
of H that is normal in G. By Galois theory, it only remains to prove the 
following theorem. 

THEOREM 4.6. Let H,, H16G and suppose that H, g.e. H2 in G. 
Furthermore, assume 

(a) Core H, = Core H2 = 1, 

(b) There are subgroups A,, B, of G such that H, = A, n B, and 
H, c (Core A,). (Core B,). 
Then 

(H, nCore A,).Core B, = H, .Core B, 

and 

(H, nCore B,).Core A, = H, .Core A,. 
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5 

h, 

FIGURE 1 

Furthermore, there are subgroups d2, L%~ of G such that 

(i) & g.e. H, n Core A,, 9J2 g.e. H, n Core BI in G; 

(ii) dzcCore A,,&gCoreB,, and H2=d2xS32; 

(iii) &*. Core B, g.e. H, . Core B,, and ST2 *Core A, g.e. HI . Core Al 
in G; 

(iv) Hz = (J&~ . Core B,) n (L& . Core A,). 

In this translation, we are letting Q =R, = Kz, G= Gal(a/Q), 
Hi = Gal(Q/Ki), A 1 = Gal(Q/L,), and B, = Gal(f;;)lM,). Figure 2 is helpful 
in following the proof. 

ProoJ: Observe that as Core A, n Core B, E A, n B, = HI, and Core 
HI = 1, we have Core A, n Core B, = 1. Thus Core Al -Core B, = 
Core Al x Core B,. We claim that 

H,=(H,nCoreA,)x(H1nCoreB1). 
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H, . Core A, g.e. 3, . Core A, II, . Core B, g.e. A? Core B, 

AI B, 

(Core A,) . (Core B,) 

FIGURE 2 

Indeed, if h E H, then by (b) write h = ab with a E Core A 1, b E Core B, . 
Then b=a-‘hEAl so that bEAlnB,=H1, and thus bEHInCoreB,. 
Similarly, a E H, n Core A 1, establishing the claim. 

Now both H,, Hz score A,, Core B1, hence H, g.e. H2 in Core 
A, *Core B, (by 2.1(c) and restriction). By Lemma4.3 we can write 
H,=d* x@, where ~?~~Core A,, 9&zCore B1, and also d2 g.e. H, n 
Core Al and S?* g.e. HI n Core B1 (where this is g.e. in Core A, . Core B, ). 
By Lemma 4.2 the above holds for g.e. in G. This proves (i) and (ii). 
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For the very first conclusion, let XEH~ .Core B,. Write x= hb (hEHI, 
bEBl). In turn, by the claim write h=u,bl with a, EH~ n Core A,, 
blEH1nCoreB,. Then x=hb=a,(b,b)E(H,nCoreA,).CoreB,. As 
the other containment is clear, we have (23, nCore A,) .Core B, = 
H, . Core B, . The other statement is proven likewise. 

For (iii) we apply Lemma 4.4 in Core A, . Core B1 to obtain 

r;l:. Core B, g.e. H, . Core B, 

and 

Bz.Core A, g.e. H, .Core A,, 

where this is g.e. in Core A I . Core B, . Again by Lemma 4.2 this is g.e. in 
G also. 

For the final statement (iv) first observe that if XE H2 then x=ab 
(a~.&*, bEgz). So x=b.(b-‘ab)=(a-‘.(ab-‘a-‘))-’ is in the inter- 
section. Conversely if y is in the intersection, write y = a,bI = b2aI 
(u1ECoreA,,a,E&012, b,ECoreB,,b2E9YJ. As CoreA,nCoreB,c 
Core H, = 1 and Core A, and Core B1 are normal subgroups of G, the 
elements of Core A, and Core B, commute. So 1 = a2b, a;’ b; ’ = 
(a2a;‘).(b,b;‘) gives a,a;‘=b,b,‘~CoreA,nCoreB,= 1. Thus 
a,=a,E&‘z,b2=b,E~z, so YE&~~~=H~. 1 

We record two other results from Galois theory that are useful in 
conjunction with Theorem 4.5. 

PROPOSITION 4.7. Let F,, F2 be Galois extensions of a field k with 
F,nF2=k.Zfk,, kzarefieldswithkckiGF,(i=1,2) then 

(a) [k,kz: k] = [k,: k][k,: k], and 

(b) (klkZ)nF,=ki (i= 1,2). 

Proof Denote 52 = F, F,, G = Gal(Q/k), Gi = Gal(Q/Fi) (i= 1, 2), 
Hi = Gal(Q/ki) (i = 1,2). The hypotheses yield G, G, = G, G, n G2 = { 1 }, 
and Gi Q G. Thus G = G, x G,. Since plainly Gi< Hi (i = 1, 2), statement 
(a) translates to the obvious identity [G: H,][G: H,] = [G: H, n Hz]. 

For (b) we need only show that (H, n Hz). G, = H,. Let y E H, and 
write y=g,g, with g,EGi. Then g,EG2CHZ and gz=gclyEH1 so 
g, E H, n H2. Thus y E (H, n H,) . G1. The other containment is clear. 1 

PROPOSITION 4.8. Let L, , L,, M, , MZ be number fields such that L, a.e. 
L, and M, a.e. M,. Zf [LiMi: Q] = [L, : Q][M,: Q] (i= 1,2), then L,M, 
a.e. L,M2. 
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- - 
Proof By Theorem 2.2, t, = L, and R, = ii;l?, thus L, M, = L2Mz. Let 

.!Y’= (p:pEZisaprime,unramifiedin L,M,j. 

Now for any p E Y (in the following, all tensor products are over Q), 
Theorem 2.1 gives L, 0 Qp z L, 0 Qp and M, @ Qp r M2 @ Qp. The 
hypothesis on degrees gives LiMi g Lj @ Mj (i = 1, 2). Therefore, 
(L,M,,QQ, z Q, E L,QM,C3Q, E L,QM20Q,rL,QM,QQ,r 
(L,M,)QQ,. Thus by Theorem 2.1, L,M, a.e. L,M,. 1 

We finish this section with an application of Theorem 4.5 to the study of 
fields arithmetically equivalent to Q( n&). 

THEOREM 4.9. Let x” - a be irreducible over Q and write n = 2’m 
(m odd). Let L, == Q(*‘&) and M, = Q(-A). Then [I?, n A, : Q] < 2 and 

L, n M, E Q([,). Let K be a number field a.e. to Q(“&). Then 

(a) lfL,nh?,=Q then K contains subfields a.e. to L, and M, . 

(b) Ifz, n &?, = Q(G) (c$ Q*) then K(,,&) containssubfields a.e. to 

L,(&) and M,(A). 

Prooj: From Theorem 2.4a we have that Qcn&) n Q(cn) = Q( *‘,,&). 
Thus [Sz: Q] = n .4(n)/2” (where 4 is Euler’s totient function). Since 
Q(Z”&)/Q b 1’ IS a e tan, we have that c2’ E Q( “A) and so czs E L, , which in 
turn implies that [IL, : Q] d 2’4(2’)/2”- ‘. Again from Theorem 2.4a, we 
have that [n, : Q] = m#(m). Since’s = L, R,, it now follows that 

n#(n)/2” = [C?: Q] = [L, : Q] . [H, : Q]/[L, n A?, : Q] 

6n&n)/(2”-’ .[t, C-J@,: Q]), 

which yields [t, n &?, : Q] 6 2. 
Since L, n ii;i, is at most a quadratic extension of Q contained in 

Qcm,/‘& <,), where m is odd, it follows that E, n i?, z Q([,,,). We now 
prove parts (a) and (b). 

For (a), since E, nh?, = Q we can apply Theorem 4.5 (with K, = 
Q&,b, K= KJ t o obtain fields &, d2. Now from Proposition 4.7 (with 
F,=L,, Fz=&?,,k,=L,, k?=M,) we have 

K,nIz;i,=(k,k,)nA,=M,, 

and 

K,nL,=(k,k,)nL,=L,. 

Now apply Theorem 4Sb, c to complete the proof. 
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For part (b) observe that Qcfl&, ,,&) a.e. K(d) (apply Proposition 4.8 

and Theorem 2.2, if A$ Q(“&)). We want to apply Theorem 4.5 to 

K, = Q($, ,/%, Kz = K(,h, and the subfields L,(s), M,(A) of K,. 

First, as &E L, n i@, , we have L,(J) n M,(A) = L1 n W, = 

Q(A) E K1. Next, L,(d). M,(G) = L, M, (&) = K1. Thus to complete 

the proof of this part we need only compute K, nM,($) and 

K, n L,(G). For this, we once again apply Proposition 4.7b, this time 
with k= Q(d), k, = L,(A), k2=Ml(,,&), F1 =fzI, Fz=k2. We have 

K,nM,(~)=(k,k,)nF,=k,=M,(~) and K,nL,(&)=(k,k,)n 

F, = k, = L,(A). Applying parts (b) and (c) of Theorem 4.5, the proof is 
done. 1 

5. THE GENERAL CASE 

In this section we prove the following theorem, which together with 
Theorems 3.1 and 5.3 completely solves the problem addressed in this work. 

THEOREM 5.1. Let x” - a be irreducible over Q and write n = 2em, m odd. 
Let K a.e. Qcn&). Th en K contains subfields L, M such that L a.e. 
Q( “&), M a.e. Q( “‘&) and K = Lii4. 

From Theorem 4.9 we see that if ,?Z, n i@, = Q, then Theorem 5.1 is true. 
We need some further results dealing with radical extensions of fields, 

which we collect together in the next result. But first, some notation. 
Let F be a field and let c1# 0 be algebraic over F. We let O,(a) denote 

the order of the coset aF* (where F* =E\{O)) in the quotient group 
F(a)*/F*. The following appears in [S]. 

THEOREM 5.2. In the setting above: 

(a) Assume OJa) = m, and let oM denote the number of mth roots of 
unity in F, where char F/m. Then F(a)/F has abelian Galois group iff there 
exists j3 E F with (oL”‘)~~ = /I”. 

(b) Assume Od-(a) =m and suppose that ([F(a): F], m) = 1. Then 

~=dLn, where d E F. 

(c) Let PEZ be a prime and suppose that {+E F. Zf Odu)=p’, then 
[F(a): F] =pf. 

(d) LEQY&) iff -aEQ2. 

(e) A finite extension K/F has the “unique subfield property” if for 
every divisor t of [K: F], there exists a unique subfield of K of degree t 
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over F. Zf 4(n, then Q(“&)/Q h as the unique subfield property (ff 

14 4 Qt”&). I 

The next result is fundamental to the proof of Theorem 5.1. 

THEOREM 5.3. Let m be odd and let x2m - a be irreducible over Q. Then 
Q(““&) is a solitary field. 

Proof. Let K be a.e. to Qc2”‘&). Since K and Q(2m&) have the same 
normal core, we have vf a E K. Let Sz = Q(czm, 2qi). 

Let IX = 2m& and t = O,(X). From Lemma 2.3 we have that n/K is 
abelian, so K(cr)/K is abelian. If w  = o, denotes the number of tth roots of 
unity in K, we have by Theorem 5.2 that there exists PE K, such that 
((X’)OJ = 8’. 

Now the only roots of unity in Q(““&) (and thus in K) are those con- 
tained in Q( ‘,&) n Q(rzm) = Q(z’&) (see Theorem 2.4a), where 2” I2m. 
Thus s = 0 or 1, so this intersection is either Q or Q(G). So we have that 
either o = 6 if 3 1 m and a = -3d2, dE Q; otherwise (1~ = 2. We consider 
these cases. 

Case 1. 0=2. We have that (a’)’ = (2-‘#)z = “‘fi = /I’. Thus 
/I = ii. n’&, so K contains a conjugate of -&. But GE K, so K is 
isomorphic to Q( ‘,&). 

Case 2. o = 6. (Recall that o = 6 implies that 3 1 m and a = - 3d’, for 
some de Q.) We have that (u’)~ = -j’;;” = fl’, so K contains a conjugate of 
m/3&, and again since &E K, we have that a conjugate of 2m13& is in 
K. Thus without loss of generality, we may assume that Q(2m13&) c 
Kr\ Q(““&). 

Let T=Gal(Q([,,)/Q([,))= {v: v- 1 (mod 3)} (where v-a,., and 
a,(i2,,) = is,). Since ilJ E Q(2m:3&) we see that Q(2m&)/Q(2m~3,,&) is 
normal and in fact abelian so Gal(Q/Q( 2mi3&)) z Gal(Q( ““A)/ 
Q(2mi3&)) @ T, where T is identified with Gal(Q/Q(‘“&)) = ((0, c): 
v~T)={(O,~~):v~l(mod3)} ( see 
Gal(S2/Q( 2mi3&)) is abelian. 

Section 2 on C, x C,*). In particular. 

For notational convenience, denote L = Q( 2m/3&). By way of contradic- 
tion, assume K S& Q(2m&). Th en 
is a cubic extension of QcZrnJ) 

since L c K, we must have that K( ““$) 
a in 52, and as such, corresponds by Galois 

theory to a subgroup of index 3 in ((0, v): v E T). Let this subgroup be 
{to, 0): VET,}, where [T: T,] = 3. Now view T, as a subgroup 
T=Gal(Q(iz,)/Q(2;,)). Then the fixed field of T, in Q(52m) is a cubic 
extension of Q(i,), and from Kummer Theory, this fixed field must have 

Ml 35.3-Z 
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the form Q(i,, ‘A), where y E Q(c3). Thus the fixed field of { (0, u): u E T,} 
is Qt2”‘,,h 3&X so Kc Q(‘-&, ‘&). 

In Fig. 3 we display the lattice of subfields as above, and their corre- 
sponding Galois groups. The explicit form of the Galois groups shown can 
be checked directly. We next give a better description of J= Gal(SZ/K). 

Since Gal(Q( 2m&, 3&)/L) z C3 @ C,, there are four intermediate 
fields of degree 3 over L. These are Q(2”‘&), L(3&), Q(2m,&. ‘A), 
and Qczrn&. “8). H owever, K must be one of these. It is not the 
first, by assumption. It cannot be the second since ‘&$ K (recall that 
Q(L 3&9=Q(L) and Q(2mJ;;)~Q(r,)=Q(i3)=KnQ(i2,)). So K 
must be one of the two latter fields. Now let T= T, o hT, u h2T, be a 
coset decomposition, where if UE T then: ~,(~fi) = Ci ‘&iff u~h’T,. We 
can now display J. 

R (1) 

Q(2mG% 343 i & 

Q(2mG) K vJ3 {(O, v) : VET) J {(k . ‘9, v) : veTI, k~(0, 1, ?}) 

v v 
L = Q(2m/3fi) {(k y, v) : VET, kE{O, 1, ‘}} 

Q(G) = Q(C,) 

I 

Q G 

FIGURE 3 
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If K= Qczrn&. ‘A) 
then 

i 

(0, v): VET,, 

J= (2.2m/3, v): vEhT,, 

(2m/3, v): vEh2T,. 

If K = Q(2mJa. ‘fi, 
then 

J= (2m/3, v): 

‘i 

(0, 0): VET,, 

vEhT,, 

(2 .2m/3, 0): v E h’T, . 

For example, in the first case (with the notation of Section 2), we 
have that if veh2T1, (2m/3, v)(~~,,&~~&)=(~~~~~~)~(~~~~&)= 

y/h. ‘J;. 
Now observe if 9(m and y=c3, then either K=Q(2m&.3J)= 

Q(&, . 2m&) or K= Q(2m&. ‘#) = Q([G . 2m&), and so K is clearly 
conjugatetoQ(2m,/;;).Nowletm=3’m,, where3l’m,,tal. 

If ‘&E Q([,,), then since Q(c3!)/Q({,) has cyclic Galois group, we 
would have that Q(c3, ‘&) = Q([,), so then y = cl .a3, thus Q(2m&. ‘&) 
= Qczrn,,& c9 .b) = Q(2m,/&) since & E Q( zm,,/&), so we are done. Thus 
in the following we may assume that “A $ Q({,,). 

Now Gal(Q([,,)/Q([,))= {v:u- 1 (mod 3’)) L C&. Since Q(c3, “A) 
$ Q([,,), there exists v = 1 (mod 3’) such that v 4 T,, and so v E hT, or 
u E h2T,, So as an element of J (regardless of the two choices for K), this 
v occurs as either (2m/3, v) or (2.2m/3, v). It is crucial here to note that 
3’-’ exactly divides the first component. 

Now, (0, V)EH and cl,(O, v)c {(ol(l -v), v): aECzm), and 3’la(l -v), 
since v was chosen so that v - 1 (mod 3’). Therefore, from the preceeding 
paragraph, Jn cl,(O, v) = @, while H n cl,(O, v) = { (0, v)}. Thus H and J 
are not Gassmann equivalent, contrary to the assumption that Q(2mt/;;) 
a.e. K. Thus Kr Q( 2m&), and Q( 2m&) is a solitary field. u 

COROLLARY 5.4. Assume n = 2’m, m odd (no restriction on e). Zf K a.e. 
Q(“&) then a conjugate of m& is in K. 

Proof This is certainly the case if t, n R, = Q, so assume 
L,na,=Q(&) with c$Q 2. By Theorem 4.9b we have that K(&) 

contains a subfield a.e. to Q(-&, A) = Q( ‘,&) (for example, with 
b = a2cm). But by the previous results Q(2m$) is solitary, so K(J) 
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contains a conjugate of 2m$, hence also a conjugate of m,,&. Thus 
ck -Ji E K(d), for some i. 

If K(J) = K, then we are done, so assume K(A) #K. Let 
O,(cm m&) = t, where t Im. As [K([k. “‘A): K] < 2, it follows from 
Theorem 5.2b that [k . -,,& = [, .d for some dEK. Thus d=<,’ [L 
-,,& E K, so K contains a conjugate of -,,&. 1 

THEOREM 5.5. If i4 E Q(“&) then Qcn&) is a solitary field. 

Proof: By Theorem 5.3 we can assume n =2’m, e>2. From 
Theorem 5.2d we have that -a E Q *. Now let K be a.e. to Qcn&). If 
& n li;i, = Q then we are done by Theorems 4.9a, 3.1, and 5.3. So assume 
L, n a, = Q(d) with c $ Q2. By Theorem 4.9b, K(&) contains a subfield 
a.e. to Q(‘;/;;, &). However, -a E Q’, so c4 E Q( “A, &), and 
this implies that Gal(Q( “,/;;, J2<, &)/Q(“&, A)) is cyclic. Hence 
Q(“&, J) is a solitary field. Thus it follows that a conjugate of *‘A is 
contained in K(d), 
“&E K(d). 

so without loss of generality, we may assume that 

If “,,6 E K then we are done by the previous corollary. So K(*‘&) = 
K(d) is a quadratic extension of K. However, by Theorem 5.2~ 
(with p = 2), we have [K( “A) : K] = O,( “&) (since c4 E K), and so 
O,(“,,&) = 2. Thus “-‘A E K, and since “‘GE K by the previous 
corollary, we have nJ2J& K. 

It is now easy to see that Gal(K(&)/Q(“‘*$)) is C2 0 C2 and that the 
quadratic extensions of Q(‘12&) contained in K(A) are Qcfl&), 

Qtn’*,h ,h Q&b. ,/h. K must be one of these. It cannot be the 
middle field since &$ K. But now from the fact that & E Qcm&), 
Theorem 2.4~ and d show that the only radical extensions a.e. to Q(‘&) 
are those isomorphic to Qcn&). Since the other two choices for K are 
radical extensions, it follows that Qcn&) is solitary. 1 

The proof of Theorem 5.1 requires two more technical lemmas. 

LEMMA 5.4. Assume that n = 2’m, with e 2 2, m odd. If14 # Q(“&) and 

h&=Q(J), h c w ere c q! Q’ and ,,,6~ Q([,), then Qc2’&) n Q(4’2e) = 

Q and [Sz: Q] =n .4(n)/2 (where 52 = Q(‘,/& 5,)). 

ProojI As before, let Q(in) n Q(“&) = Q(‘“&). Then [a : Q] = 
nd(n)/2”. Since Q( 2s&)/Q is abelian, this implies that c2* E Qcfl,,&). So by 
assumption, s < 1. If s = 0, this forces L1 n $?i = Q, contrary to assump- 
tion, so s=l. Thus [L,li;i,: Q] =n.d(n)/2= [L,: Q].[n;i,: Q]/2= 

CL1 : Ql md(m)/Z so [L1 : Q] = 2’#(2’), hence Qc2’&) n Q(c2c) = Q. 1 
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LEMMA 5.7. Suppose that Q( “&) n Q(izv) = Q. 

(a) If e = 2, then the quadratic .&fields of i;, = Q( “&, 14) are 

Qt,/‘Z;;,> Q(i4). 
(b) If e 2 3, then the quadratic subfields of L, = Q(“.&, izg) are 

Q(L), QtJ’I?,, Q(&,, Qt,h% 
Proqf: (a) is trivial, so we shall assume that e> 3. From 

Q(“&) n Q(C2<) = Q we have that & $ Q(cg). Let Q(d) be a quadratic 
subfield of L,. By way of contradiction, suppose that Jcd$ Q(&, ix). 
Then Gal(Q(& Jd, <*)/Q) = C2 @ C, 0 C, @ Cz and so Gal(Q(.k 
MiQ,=C,@C2OC2. 

Since c4 4 Q(“‘,/;;), the extension Q(“.&)/Q has the unique subfield 
property by Theorem 5.2e. Since & $ Q([s, &), this forces Q( “‘4) n 
Q(<*, J?f) = Q. Thus Gal(Q( “&, 18, &)/Q( “fi)) = Cz @ Cz @ Cz. This 
is a contradiction, since Gal( Q( “A, [?,.)/Q( “& )) = C,, -2 0 C,. Thus 
&e Q(& is,, so Q(,h is one of the listed fields. 1 

Proof’ of Theorem 5.1. By the results above we may assume that 

c4 4 Q(‘&), e > 2, and that L, n Iill = Q(&), where c $ Q2, &E Q([,,,). 
By Lemmas 5.6 and 5.7, Q(j) c must be one of the fields listed in 

Lemma 5.7. Since Q(&) C_ Q(5,), and i4, m $ Q(c,), it cannot be 
Q(i4), Q(m). So there remain four possibilities. 

Case 1. Q(d) = Q(A). Then Q(r’,,/k A) = Q(‘&), hence 
K(,/&K and Q(‘<&. A) = Q(“&). By Theorem 4.9, K contains a 
subfield a.e. to Q( ‘?&). Corollary 5.4 completes this case. 

Case 2. Q(d) = Q(G). Then Q(“&. J) = Q(l@&, cd). 
However, Gal(Q(*“&, [2e)/Q(2L.&, t4)) is cyclic, so Q( “A, J) is 
solitary. Thus K(J) c contains a conjugate of “J;;, so we may as well 
assume that “,,&E K(d). But then, K(&) = K(G) = K(c4). Now let 
2’ = O,(“&). Since c4 $ K and K(&)/K is abelian, Theorem 5.2a gives 
/I E K such that ( “-‘,,I%)’ = /?” (the only 2’th roots of unity in K are + 1). 
Thus fl= ii, z-’ &, so K contains a conjugate of ” ‘4. But nr$ E K. 

so ‘I’& E K. Thus Q( “12&) c Kc Q(“&, J). As in the proof of 
Theorem 5.5, since &$ K, K is a radical extension. This case now follows 
from Theorem 2.4~. 

Case 3. Q(A) = Q(G). Then Q( “‘&, &) = Q(“,/k fl). 
Since e 2 3 in this case, we have that Gal(Q(“‘&, [,)/Q(“&, fl)) is 
cyclic, so Q(*‘&, fl) is solitary. As in the previous case since i4 4 K. 
we can conclude that “/‘GE K, and the rest of the proof is as in Case 2. 
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Case 4. Q(&) = Q(&). Then Qc2;/;;, A) = Qc2”&, $!). But this 
last field is not necessarily solitary, since Gal(Q(‘;/;;, izC)/Q(“,/& ,/?)) is 
not cyclic. So we consider an extension of this field. 

From Proposition 4.8 we see that Q(‘&, is) a.e. K(i,) and so by 
Theorem 4.5, K([,) contains a subfield a.e. to Qc2;/;;, is). But this field is 
solitary, so K(c,) contains a conjugate of “&, which we may assume is 
“A. Then Kc K( 2e&) c K(cs), and since c4 $ K and Gal(K([,)/K) is 
abelian, we have (by applying Theorem 5.2a) that *‘-I& E K, and so 
““v/lI E K. Thus Q(“‘&) c KC Qcfl&, c8). But the quadratic extensions 

of Q(““&) contained in Q(‘&, is) are Q([i ‘&), QcH&.m), 
Q(““&, &?), and Q(““&, &). The field K cannot be one of the last 
three since c4, m $ K, so K is one of the first four. But these are all 
radical extensions, for which the theorem already holds. l 
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