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THE GALOIS GROUP OF A
RADICAL EXTENSION OF THE RATIONALS

Erior T. JACOBSON AND WILLIAM Y. VELEZ

The Galois group of the splitting field of an irreducible binomial

22" — a over Q is computed explicitly as a full subgroup of the holo-
morph of the cyclic group of order 2¢. The general case ™ — a is also
effectively computed.

0. Introduction.

The computation of the Galois group for the splitting field over Q
of a polynomial in Q[z] is a problem most mathematicians see in their
first modern algebra course. However, there are very few classes of
polynomials for which a universal description of the Galois group is
known. Examples include irreducible quadratics, and the cyclotomic
polynomials. These two examples in turn are just special cases of com-
puting the Galois group of the splitting field of a binomial z™ — a.

It is unexpected that an explicit description of the Galois group of
the splitting field of 2™ — a, where 2™ — a is irreducible over Q, does
not appear in the literature. In this paper we offer such a description
when n is a power of 2. The description for arbitrary n is based on

determining the quadratic subfields of Q((,).

The authors thank the referee for his helpful suggestions.
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Although the case when n is odd has been known since the time of
Galois, it is the exceptional cases that arise when 8|n that sparked our
interest in this problem. Because arithmetic equivalence amounts to
a profound knowledge of the subgroup structure of the Galois groups
that arise, these computations give an alternative approach towards
answering questions on arithmetic equivalence for radical extensions.
Indeed, much of the classification achieved in [4] would not have been

possible otherwise.

1. Some properties of radical extensions.

Fixed in this paper is an irreducible binomial 2™ — a over Q with

h

n > 2. Let (, denote a primitive n*"-root of unity, and denote Q =

Q( Va,(n), the splitting field of 2™ — a. We set G = Gal(Q2/Q), the
Galois group of 2™ — a. Let Z, denote the cyclic group of integers
modulo n, and let Z be the multiplicative group of integers prime to n.
Multiplication in Z provides a natural isomorphism 6: Z} — Aut(Z,).
Let G denote the semidirect product: G =Z, x4Z}.. In other words, G
is the “holomorph” of Z,,. Thus G can be described as the set Z,XZ},

with binary operation given by

(o, u) - (B,v) = (a + ufb,uv),

for all (e, u),(B,v) € G. Note that the identity of G is (0,1) and that
for (a,u) € G we have (a,u)™! = (—au~!,u”!). As we shall see, G
is naturally embedded in G. We need a preliminary result on radical

~ extensions.

PROPOSITION 1. ([2, Theorem 1 and Proposition 2]). Let " — a

be irreducible over Q. Then

(a) Q( ¥a)NQ(¢n) = Q(%/a), for some s > 0. In particular,
2°|@¢(n) (where ¢ is Euler’s function).
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(b) Let h =max{2%: 29|n and a = ~®*" some c €Q}. Then

h, ifh=1orh=2%a= —ch_land C2q+1\/5 € Q(¢n)
2% =

3 otherwise.

In the remainder of this paper, s will always refer to the invariant of
Proposition 1; it is fundamental to this work. We can now describe the

embedding G — G.

PROPOSITION 2. G is naturally isomorphic to a subgroup of G of

index 2°. Moreover, the projections of G onto the first and second

factor of G are both surjective (i.e., G is a “full” subgroup of G).

PROOF: Any element ¢ € G is completely determined by its values
at ¥a and (». If o(¥a) = Ya- (¥ and o((,) = (¢ for integers «,
u with (u,n)4.¢ = 1, then o corresponds to the pair (a,u). The map
o — (a,u) is easily seen to be an injective group homomorphism. The
index statement follows as |G| =n-¢(n) and |G| = [Q: Q] = n-¢(n)/2°.
Finally, by the Isomorphism Extension Theorem, both projections are

surjective.

For the remainder of this paper we will view G C G. We continue
this section by stating the results on radical extensions that will be

needed.

PROPOSITION 3. ([7, Theorem 2.1]). Let 2™ — a, ™ — b be irre-
ducible over Q. Then Q( ¥a) = Q( Vb) if and only if either

(a) a = b'c", where (i,m)ged = 1 and c € Q; or
. n .
(b) 8|n; —a, —b are squares in Q, and a = b*22 ¢" , where (¢,1)geqd =

1 and c € Q.
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We say that a field extension E/F has the unique subfield property
(USP) if for each divisor t of [E : F] there exists exactly one subfield

of F of degree t over F.
PROPOSITION 4. ([1, Theorem 2.1] and [3, Theorem 1.8a]). Let F
be a field of characteristic 0 and let 2%° —a be irreducible over F. Then

(a) (4 € F(%/a)\F if and only if —a = ¢ for some ¢ € F (where
“\” denotes the set-theoretic difference).
(b) If e > 2 then F(2%/a)/F has the USP if and only if ¢, ¢

F(%/a)\F.
PROPOSITION 5. ([6, Theorem 2.1 and 2.2]). Let F be a field of

characteristic 0 and let ™ — a be irreducible over F. Let w, be the

number of n-th roots of unity in F'. Then

(a) F(%Ya)/F is an abelian extension if and only if a“» = b" for

some b € F.
(b) If F(¥a)/F is abelian, then Gal(F(¥a)/F) is either Z, or
ZQGBZ% .

We view the case s = 0 as the “general case,” the other cases being

“exceptional.” By virtue of Proposition 1, the general case is solved:

THEOREM A. Ifs =0 then G = G. Moreover, s = 0 if and only if

either
(a) n is odd, or

(b) n is even , and \/a ¢ Q((r).

In particular, a complete computation requires the knowledge of all
quadratic subfields of a cyclotomic extension, for which we refer the
reader to [8, Exercise 7-4-4].

Thus we assume that n is even and s > 1. As usual Gal(Q((r)/Q)

> Z7, where u € Z}, corresponds with o, given by o,(¢n) = (&. We
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also view Gal(Q((,)/Q) = {(0,u): u €Z:} C G. Set H = Gal(Q(¢r)/
Q( %y/a)) and view H CZ*.

Observe that if s = 1 then Q(+/a) is a quadratic subfield of Q((r),
and H is a subgroup of index 2 in Z}. Such subgroups H are easily
described. For instance, if 2||n then the quadratic subfields of Q((,)
are precisely the fields Q(\/E) where d is any square-free divisor of n
with d = 1(mod 4). The corresponding group Hy of index 2 consists
precisely of those u €Z for which the Jacobi symbol (—3) = 1. The
next result shows that the computation of H and G are equivalent in
this case. In section 3, the groups H that arise when n = 2¢ will be

listed explicitly.

THEOREM B. Assume n is even and s = 1. Then

0 (mod 2), ifue H

1 (mod 2), ifu¢ H )

G={(a,u):a= {

ProOOF: Certainly, the set described is a subgroup of G of index 2,
so we need only show the containment C. Let 0 = (a,u) € G. As

Vva €Q((r), write /a =Y a; - ¢ for some a; € Q. Observe that
o(va) = o(¥a)% = (Va ()% = va-(-1)°

and
o(Va)=a(D_aiG) = ) ai- (i = ou(Va).

The equality \/a - (=1)* = o,(1/a) gives the result.

2. Full Subgroups.

In this section we briefly digress to consider full subgroups of semi-
direct products. Let G = M X H be an external semi-direct product
(with A x 1 normal in G, and M acting on A on the left). A subgroup
G C G is said to be a full subgroup if the projections onto N and H are
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both surjective. The following is a well known characterization of full
subgroups. For convenience, A is written additively (though it need

not be abelian) and H is written multiplicatively.

LEMMA 1. Let G be a subgroup of G and let Go = {(a,1): @ € N
and (a,1) € G}. That is, Go = GN (N x 1).

(a) IfG is a full subgroup of G then Gy is an H-invariant normal sub-
group of N x 1 and there is a surjective crossed homomorphism
¥: H — (N x 1)/Gy. Furthermore, |G| = |Go| - |H]|.

(b) Conversely, if Gy is an H-invariant normal subgroup of N’ x 1
and ¢¥: H — (N'x1)/Gy is a surjective crossed homomorphism,
then Gy = {(a,u): Go(a,1) = ¥(u)} is a full subgroup of G of
order |Gy| - |H|.

PRroOOF: For (a) suppose that G is a full subgroup. Given any u € H,
there exists @ € N such that (a,u) € G. Define ¢¥: H — (N x 1)/Go
by ¥(u) = Go(e,1). To see that 9 is well defined, assume that (a;,u)
is also in G. Then (a1, ) (o, u)™! = (a1,u) - (=v " la,u™t) = (a1 -
a,1) € Gy, so Go(a1,1) = Go(a,1). Thus ¢ is well defined, and is
obviously surjective. Given u € H, let @ € A be such that (a,u) € G.
Let (a;,1) € Go. Then we have (a,u) ! (ay,1)(a,u) = (v la,1) €
Gy, so conjugation is independent of choice of a, giving an action (by
conjugation) such that Go is H-invariant. To show that v is a crossed
homomorphism, consider uy,u; € H with lifts (ay,u1), (az,u2) € G.
Then (a1,u1) - (@2,u2) = (@1 + wya2,u3uz), so P(uuz) = Go(og +
uy0g,1) = Go(ag, 1)+ u1Go(az,1) = P(uy)+u1¥(ug), with the induced
action of H on (N x 1)/Go.

To determine the order of G, observe that if (a,u) € G, then for any
(a1,1) € Go, (a1,1) - (a,u) = (01 + a,u) € G. Conversely, if (a1, u),
(a2,u) € G, then (a1,u)-(az,u)™! = (a1 —a2,1) € Go, so every u € H
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lifts to |G| elements of G.

The proof of part (b) is even more straightforward, and is omitted.

THEOREM C. Let G be a full subgroup of Z,xZ}. Then G =
Gal(Q( ¥a,(,)/Q), for some irreducible binomial z™ — a over Q.

ProoF: Let Go = GN(Z, x1). Then there is a surjective crossed homo-
morphism ¢ : Z}, — (Z,x1)/Go = Z,,, where m|n. So the values ¥(u)
can be viewed modulo m, hence ¥ induces a crossed homomorphism
into the multiplicative group of m®* roots of unity, ¥*: Z* —Q((,)*
via ¥*(u) = W), However, by Hilbert’s Theorem 90 [9, Theorem
1-5-4] , we have H(Z7,Q(¢n)*) = 1, so that there exists a 8 € Q({»)*
such that ¥*(u) = 0,(8)/8, for all u €Z? (where o, is defined as on
page 4). Thus ¥*(u) = 04(8)/8 = (L™, s0 0u(8) = ¢(X* - . From
this we see that o,(8™) = ™ for all u € Z%, so ™ = b € Q. Also,
since 9 is surjective, g,(3) takes on m distinct values as u varies. Thus
g™ — b is irreducible and 8 = Vb is contained in an abelian extension
of Q. This forces m = 2* for some s > 0 (else, if an odd prime p|m then
Q(¥/b)/Q is abelian, so ¢, €Q(Y/b), contradicting degrees). Without
loss of generality, assume b € Z.

If m=1then Go =Z, x1CG. Now if (a,u) € Z,,xZ?, then since
G is full, there exists ¥ € Z,, such that (y,u) € G. Since (a—~,1) € G,
this gives (a — 7,1) - (y,u) = (a,u) € G, hence G = Z,%Z},, which
we know is the Galois group of a radical extension of Q. Thus we may
assume that m > 1, and so n is divisible by 2.

Let p be a prime which is relatively prime to nb and let a = bp™.
Then 2™ —a is irreducible (see [5, Theorem 51]), and Q( ¥/a) =Q( Vb).
We will show that G is the Galois group of Q( ¥a,(.)/Q. We first
show that Q( ¥a)NQ(¢») = Q( Wa). We have already shown that
Q( ¥a)NQ(¢n) 2 Q( Wa). If this intersection is larger, then it would
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contain Q( 2/a). However, p is ramified in Q( >%¥/a), yet (p,n)gea = 1,
so p is unramified in Q((r ), hence the intersection is as indicated. Thus
1Gal(Q( ¥/a,(n)/ Q)| = né(n)/m = |G|.

Now given u € Z}, we know that o, has n/m distinct extensions to
Gal(Q( ¥a,(,)/Q). Let T be one of these extensions. Then 7( ¥/a) =
¢t - Wa, for some 0 < t < n. Raise this equation to the n/m power
to obtain ¢f, - ¥a = r( a) = au(Bp) = (A" - Bp = (™) %/a. Thus
t = ¥(u) (mod m). So the extensions of o, to Gal(Q( ¥a,(,)/Q)
are {0y 0: @ € Z,, a = ¥(u) (mod m)}, where o, o( ¥a) = (¥ - Ya.
Therefore Gal(Q( ¥a,(,)/Q) = {Oun: v € Z), , @ € Zy,, o = Y(u)
(mod m)}. Observe that 0, 400, ,( ¥a) = 04.4((])- Ya) = (¥7H*- Y,
hence 04,400y y = Fuy,uyta. The mapping G +— Gal(Q(¥a,(n)/Q),

given by (a,u) — 0, o is an isomorphism, by part (b) of the lemma.

3. The case n = 2°¢.

Fixed in this section is an irreducible binomial z2° — a over Q. For
small values of e, G is easily computed, thus we assume that e > 3.
In this case it is well known that Z}. has generators {—1,5}, where
5 has order 2°~? and generates the subgroup of residues congruent to
1(mod 4). These generators are the basis for our computations in this
section.

As usual, let Q( %/a) = Q( &/a)N Q((ye), with s > 1, and let H =
Gal(Q((ye)/Q ( W/a)), viewed as a subgroup of Z..

PROPOSITION 6. Suppose 22 —a is irreducible over Q, with e > 3.
Then

(a) If s = 1 then Q(v/a) is one of Q((4), Q(v2) or Q(vV=2).
Furthermore,
(i) If Q(va) = Q({4) then H = (5) = {u € Z:
= 1(mod 4)}.
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(ii) If Q(v/a) = Q(v2) then H = (-1,5%) = {u € Z}.:
u = 1,7(mod 8)}.
(ii) If Q(va) = Q(v-2) then H = (-5) = {u € Z}.:
u = 1,3(mod 8)}.
(b) If s > 2 then Q(%/@) = Q((yo41) and H = (52" ') =
{u € Zje: u = 1(mod 2°%1)}.

PRroOF: (a). As Q(1/a) C Q ((ye), the first statement follows as Q((se)
contains exactly these three quadratic subfields. The rest of (a) follows
from the identities V2 = (5 + Cs"l and V-2 = (s — (8"1, and counting.

(b) For s > 2, since Q( %/a) C Q((ye), the extension Q( %/a)/Q
is normal and hence (s € Q(%/a). As s > 2, (4 € Q(%/a). Then
Q(¢) € Q(2/@) C Q(Gye), and Gal(Q(Ge)/Q(Gy)) s cyelic. Thus
Q( 2\3/5) must be Q(C25+1 ), and the last statement follows.

By virtue of Theorem B and the above proposition, we have finished
the case s = 1. Likewise, Theorem A handles the case s = 0. The next
result takes care of the case s > 2 and completes our description of G

when n is a power of 2.

PROPOSITION 7. Suppose that s > 2, so that Q( 2/a) = Q((ys+1)-
(a) Ifa = —c*’,c €Q, then

G {(a,u): @ = %451 (mod 2°)}.

(b) Ifa=—-22""".¢%° ¢€Q, then

=1 (mod 2°), ifu=1,7(mod 8)

25-1 + =1 (mod 2°), ifu=3,5(mod 8) )

G {(a,u): a= {

PROOF: The isomorphisms arise because the embedding G — G is not

canonical, but depends on the choices of the radicals ¥a and (,. With
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these choices fixed, let 2%/a = (%/a)®” °, and (yst1 = (CQe)ze—s_1
(note s < e in this case, by Proposition 1). Finally, fix ;s = ({,s+1)*.
Note that since Q( %y/a) = Q(¢,s+1) = Q( 2\s/~—1), the cases (a) and
(b) above are interpretations of parts (a) and (b) or Proposition 3 in
this setting.
(a) Let @ = —c2* with ¢ €Q. Then c¢ is a root of 22’ +a = 0, so that
= %/a- (Zs41 for some odd z €Z.
Now for any ¢ = (a,u) € G, we have 2\5/5-C53+1 =c=o(c) =
o(( 2\7—)26—3 (Cae )226«3”1 = 2\/— Czs Qs o5+15 5O that C;s+1 = ;?-H :

jor1s thus a =z 1=% (mod 2°) and

G = {(a,u): @ = z- 15%(mod 2°)}.

Let t € Z be such that t-z = —1(mod 2°). The map (e, u) — (t-a,u)
is an automorphism of G that maps G isomorphically onto the required
subgroup.

(b) Let a = _92°7! -¢?’, ¢ €Q. Then 2c s a root of z2° +a-2 =0,
so that 2¢ = %/a - ﬂe{jsﬂ, for some odd z € Z. If u = 1,7(mod 8)
then 0,(v2) = V2 and the calculations are the same as above. If
u = 3,5(mod 8) then au(\/-) = —/2 and we have %/a -2 - Gor1 =
2¢ = 0(2c) = %Wa-C% - (-V?2)- vir1 - This yields o = 2o 4 . 152

(mod 2%). The rest of the proof follows as above.

23—1

4. General n.

Let n = 2°m, with m > 1 odd and e > 1. Denote L =Q( 2/a, Coe)s
and M =Q( Va,(n). Then Q is the compositum of L and M. If
LN M =Q then G = Gal(L/Q) ® Gal(M/Q), and both of the Galois

groups appearing as summands have been described. However, L N M

is not necessarily Q, but we do have the following.
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PROPOSITION 8. Let ™ —a be irreducible over Q, and let n, L, M
be as above. Then [LN M: Q] < 2.

PRrooOF: Since Q( 2y/a) =Q( ¥/a)NQ((r), we have that Q( 2y/a)/Q is
an abelian extension, hence (;s €Q( %/a) C L. So Q((ys) CQ( 2/a)N
Q((ye), which implies that [L: Q] < 2¢ - ¢(2¢)/2°~1. From this and
[Q: Q] =n-¢(n)/2¢ =[L: Q][M: Q]/[LNM: Q], we obtain the desired

result.

Next we characterize when [L N M : Q] = 2. By virtue of Theorems

A and B, we will assume that s > 2.

PROPOSITION 9. Let z™ — a be irreducible over Q, and let n, L, M
be as above. Assume s > 2. Then [LN M : Q] = 2 if and only if there
exists b € Q such that Q(v/b) is a quadratic subfield of Q((,), and

either

(i) e = s =2, and a = —(2b)%c* for some c € Q, or
(ii)) e > s > 2, and a = —b2s—lczs, ora = —(2b)2s—1c2s, for some

c€e Q.

PRrROOF: We first consider the case e = s = 2. First assume b,c €
Q with @ = —(2b)%c* and vb € Q((m). Then Q(va) = Q(¢4) and
Q(¥/a) = Q(¢sv2vh) = Q((14(4)Vh). Since 14 (s €Q(¥/a), we have
that vb €Q(a) = L (as e = s), and vb € M by assumption. Thus
LNnM :Q(\/E), by Proposition 8.

Conversely, assume e = s = 2 and [LN M: Q] = 2. Then as
Q(¥/a)/Q is Galois, ¢4 € Q(¥/a). Write LN M =Q(v/b) for some b €
Q. As [M: Q((m)] is 0dd, Vb €Q((m). Now, in fact, Gal(Q(+/a)/Q) =
Zy®Z, so that Q(/a) =Q((s, vb1) for some by €Q. Then Q(vb) C
Q(¢4,vb1), so that as b # —1, we must have Q(\/E) = Q(v%b;). In
cither case, Q(¥/a) =Q((s, Vb). But it is easy to see that Q((s, VD) =
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Q(/—=(2b)?), because {/—(20) = (1 + (4)vh. Hence Q(Va) =
Q( \‘/:_(W) Now apply Proposition 3.

Next we show that if e = s > 3 then LN M = Q. Indeed, if e =
s > 3 then Q( %/a)/Q is abelian, and thus (s € Q( %/a). Then Q((4),
Q(+v/E2) are three distinct quadratic subfields of Q( 2/a) = L (as e =
s). By Proposition 5b, these are the only quadratic subfields of L.
Since clearly none of these could be in M, we have LN M = Q.

Finally, consider the case e > s > 2. Assume b,c € Q with vb €
Q({m) such that (%) holds. If a = —52° 712 then Q(%a) =
Q(Czs+1 \/1;), o) C23+1\/5 € L. But e > s, 50 (541 € L, thus Vb € L.
As Vb € M, we have LN M = Q(v0). A similar argument works if
a=—(26)" ¢’

Conversely, assume e > s > 2 and [LNM: Q] = 2. Since Q( %/a)/Q
is abelian, Proposition 5a gives b; € Q with a® = b%s, hence a =
—b%s—l, since a is not a square. This gives 2y/a = (yst1 Vo If Vb €
Q((ye) then e > s gives Q( 2/a)N Q((ye) = Q( 2/a), which in turn
by counting degrees yields LN M = Q. So v/b; ¢ Q((ye). Now write
LNM = Q(\/l_)) for some b € Q, with Vb € Q((m). Then Vb €
L and Vb ¢ Q((ye) (because no quadratic subfield of Q((,e) is in
M). Therefore, Q((ye,Vb), Q((ye,/b1) are quadratic subfields of the
extension Q((ye, 2/a)/Q((se). But this extension has the USP, by
Proposition 4, and hence Q((se, \/5) = Q((se,v/b1). This gives by = by?
for some 7 € Q((e). As 7% € Q, this implies that v> = +2, or 1
times a rational square, that is, b; = +bc? or b; = +2bc? for some ¢ €
Q, as needed.

We can now determine G in the case [LNM: Q] =2 and s > 1.

From the statement of the Theorem it will be seen that the calculations

are analogous to those of Proposition 7, hence they are omitted.
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THEOREM D. Let 2™ —a be irreducible over Q withn = 2°m, m > 3

odd, and e > 1. Assume that Q( %/a, (,e)N Q( Va,(m) = Q(VD), a
quadratic subfield of Q(Cr). Let H = Gal(Q((r)/Q(VD)).

(a) Ifa= —p2°7 c?’, then G = {(a, u):

{—“—;—1 (mod 2°), ifue H
o = .
%‘—1 + 271 (mod 2°), ifu¢ H
(b) Ifa = —(26)°""¢®*, then G = {(a,u):
v=1 (mod 2°), if{ w€ H,u=1,7(mod 8) or
v ¢ Hyu=3,5(mod 8)

u € H,u=3,5(mod 8) or
uw¢ Hyu=1,7(mod 8)

Q
H

}.
1=l 4 25=1 (mod 2°), if{
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