Stability of Two-Term Recurrence Sequences with Even Parameter

Walter Carlip and Eliot Jacobson
Department of Mathematics, Ohio University, Athens, Ohio 45701
E-mail: carlip@oucsace.cs.ohiou.edu; jacobson@mars.math.ohiou.edu
Communicated by Harald Niederreiter

Received August 4, 1995; revised April 29, 1996

The authors characterize the stability modulo two of two-term recurrence sequences with one defining parameter even and determine their periods modulo sufficiently high powers of two. © 1997 Academic Press

1. Introduction

Let a and b be fixed integers and let $\left\{u_{i} \mid i \geq 0\right\}$ be the two-term recurrence sequence defined by $u_{0}=0, u_{1}=1$, and

$$
\begin{equation*}
u_{i}=a u_{i-1}+b u_{i-2} . \tag{1.1}
\end{equation*}
$$

For any positive integer m, consider the corresponding sequence $\left\{\bar{u}_{i}\right\}$, where $\bar{u}_{i} \in \mathbf{Z} / m \mathbf{Z}$ is obtained by reduction modulo m. If b and m are relatively prime, then $\left\{\bar{u}_{i}\right\}$ is purely periodic and, for each integer d, we denote the number of occurrences of the residue $d(\bmod m)$ in one (shortest) period by $\nu(m, d)$. The function $\nu(m, d)$ is called the frequency distribution function of the recurrence $\left\{u_{i}\right\}$ modulo m. A number of interesting open problems concern these periodic sequences and their distribution functions, among them the determination of the periods as a function of a, b, and m (see, e.g., $[4,10,11])$ and the description of the frequency distribution functions (see, e.g., $[5,7,9]$).

Corresponding to a fixed recurrence sequence $\left\{u_{i}\right\}$ and modulus m, we define

$$
\Omega(m)=\{\nu(m, d) \mid d \in \mathbf{Z}\}
$$

and say that the sequence is stable modulo a prime p if there is a positive integer N such that

$$
\Omega\left(p^{k}\right)=\Omega\left(p^{N}\right) \quad \text { for all } k \geq N
$$

In [1-3] we examined the stability modulo two of sequences for which the parameter a is odd and showed how stability leads to a precise description of the frequency distribution functions of such sequences. In this paper we apply techniques similar to those used in [1] to characterize the stability of sequences whose parameter a is even.

2. Preliminary Results

For the duration of this section fix a two-term recurrence sequence $\left\{u_{i}\right\}$, as defined in (1.1), with a even and b odd. Define parameters r, s, and t as follows:

$$
\begin{equation*}
2^{t+1}\left\|a, \quad 2^{s+1}\right\|(b-1), \quad \text { and } \quad 2^{r+1} \|(b+1) \tag{2.1}
\end{equation*}
$$

Note that r, s, and t are not always defined: t is not defined when $a=0$, and r and s are not defined when $b=1$ and $b=-1$, respectively. Except where explicitly stated, we will assume that r, s, and t are defined. Our main results on stability depend on the relationships between r, s, and t.

We begin by stating without proof several well-known properties of the two-term recurrence sequence $\left\{u_{i}\right\}$ (see, e.g., $[2,3,8]$).

Fact 1. The following formulas hold for all $m \geq 1$ and $n \geq 0$:
(a) $u_{m+n}=b u_{m-1} u_{n}+u_{m} u_{n+1}$,
(b) $u_{2 n+1}=b\left(u_{n}\right)^{2}+\left(u_{n+1}\right)^{2}$, and
(c) $u_{2 n}=2 u_{n} u_{n+1}-a\left(u_{n}\right)^{2}$.

Fact 2. If $n \geq 0$ and $m \geq 0$, then u_{n} divides $u_{n m}$.
Fact 3. The integer u_{n} is even if and only if n is even.
Lemma 2.1. If $m>0$, then $2^{t+m} \| u_{2^{m}}$.
Proof. Proceed by induction on m.

If $m=1$, then $u_{2^{m}}=u_{2}=a$ and the lemma follows from the definition of t.

Now suppose that $m \geq 1$ and that $2^{t+m} \| u_{2^{m}}$. By Fact $1, u_{2^{m+1}}=$ $2 u_{2^{m}} u_{2^{m}+1}-a\left(u_{2^{m}}\right)^{2}$. By the induction hypothesis and Fact $3,2^{t+m+1} \|$ $2 u_{2^{m}} u_{2^{m}+1}$. On the other hand, the induction hypothesis also implies that $2^{3 t+2 m+1} \| a\left(u_{2^{m}}\right)^{2}$. Since $3 t+2 m+1>t+m+1$, it follows that $2^{t+m+1} \| u_{2^{m+1}}$, as desired.

In the next two lemmas we gather together several useful, related congruences.

Lemma 2.2. Suppose that $\left\{u_{i}\right\}$ is the two-term recurrence sequence defined above.
(a) If $k>0$, then $u_{2^{k}+1} \equiv 1\left(\bmod 2^{k}\right)$.
(b) If $k>t$ and $0<t<s$, then $u_{2^{k-1}+1} \equiv 1\left(\bmod 2^{k+1}\right)$.
(c) If $k>t+1$ and $0<t<r$, then $u_{2^{k-1}+1} \equiv 1\left(\bmod 2^{k+1}\right)$.

Proof. Each part follows from Fact 1 and Lemma 2.1 by induction on k. We prove (c) and leave the similar proofs of (a) and (b) to the reader.

Suppose that $k=t+2$. Then $u_{2^{k-1}+1}=u_{5}=b\left(u_{2}\right)^{2}+\left(u_{3}\right)^{2}$. Since $2^{2(t+1)} \| a^{2}$, it follows that $a^{2} \equiv 0\left(\bmod 2^{k+1}\right)$. Therefore, since $u_{2}=a$ and $u_{3}=a^{2}+b$, it follows that $u_{5} \equiv b^{2}\left(\bmod 2^{k+1}\right)$. However, $b^{2}-1=(b-$ $1)(b+1)$ and $2^{r+1} \|(b+1)$, so $2^{r+2} \| b^{2}-1$. Since $r+2 \geq t+3=k+$ 1 , it follows that $b^{2}-1 \equiv 0\left(\bmod 2^{k+1}\right)$. Hence $u_{2}^{k-1}+1 \equiv 1\left(\bmod 2^{k+1}\right)$, as desired.

Suppose that $k>t+2$ and assume that $u_{2^{k-t-1}+1} \equiv 1\left(\bmod 2^{k}\right)$. Then, by Lemma 2.1, $2^{k-1} \| u_{2^{k-t-1}}$ and, since $k \geq 3$, it follows that $\left(u_{2^{k-t-1}}\right)^{2} \equiv 0$ $\left(\bmod 2^{k+1}\right)$. Moreover, the induction hypothesis implies that $\left(u_{2^{k-t-1}+1}\right)^{2} \equiv$ $1\left(\bmod 2^{k+1}\right)$. Now, Fact 1 yields

$$
u_{2^{k-t}+1}=b\left(u_{2^{k-t-1}}\right)^{2}+\left(u_{2^{k-t-1}+1}\right)^{2} \equiv 1 \quad\left(\bmod 2^{k+1}\right) .
$$

Lemma 2.3. Suppose that $\left\{u_{i}\right\}$ is the two-term recurrence sequence defined above.
(a) If $k>1$ and $t=0$, then $u_{2^{k}+1} \equiv 1+2^{k}\left(\bmod 2^{k+1}\right)$.
(b) If $k>s$ and $0<s<2 t$, then $u_{2^{k-s}+1} \equiv 1+2^{k}\left(\bmod 2^{k+1}\right)$.

(d) If $k>r+1$ and $0<r<2 t$, then $u_{2^{k-r}+1} \equiv 1+2^{k}\left(\bmod 2^{k+1}\right)$.
(e) If $k>2 t+1$ and $2 t<r$, then $u_{2^{k-2 t+1}} \equiv 1+2^{k}\left(\bmod 2^{k+1}\right)$.

Proof. As in the previous lemma, the proofs of each part proceed by induction on k and follow from Fact 1 and Lemma 2.1. We illustrate by proving (e) and leave the remaining parts to the reader.

Suppose that $k=2 t+2$. Then $u_{2^{k-2 t+1}}=u_{2^{2}+1}=u_{5}$. Note that $u_{2}=a$, and therefore $2^{k} \| b\left(u_{2}\right)^{2}$. Moreover, $u_{3}+1=\left(a^{2}+b\right)+1=a^{2}+(b+$ 1). Since $r>2 t$, either $r=2 t+1$ or $r>2 t+1$. In both cases $2^{k} \mid u_{3}+1$ and $\left(u_{3}\right)^{2}-1 \equiv 0\left(\bmod 2^{k+1}\right)$. Thus, by Fact $1, u_{5}-1=b\left(u_{2}\right)^{2}+\left(u_{3}\right)^{2}-$ $1 \equiv 2^{k}\left(\bmod 2^{k+1}\right)$.

Now suppose that $k>2 t+2$ and assume that $u_{2^{k-2 t-1}+1} \equiv 1+2^{k-1}(\bmod$ $\left.2^{k}\right)$. Then, by Lemma 2.1, $2^{t+k-2 t-1} \| u_{2^{k-2 t-1}}$ and $2(t+k-2 t-1)=(k+$ 1) $+(k-2 t-3) \geq k+1$. Thus, $b\left(u_{2^{k-2 t-1}}\right)^{2} \equiv 0\left(\bmod 2^{k+1}\right)$. Moreover, since $k \geq 3$, the induction hypothesis implies that $\left(u_{2^{k-2 t-1}+1}\right)^{2} \equiv 1+2^{k}$ $\left(\bmod 2^{k+1}\right)$. Finally, Fact 1 yields

$$
u_{2^{k-2}+1}=b\left(u_{2^{k-2 t-1}}\right)^{2}+\left(u_{2^{k-2 t-1}+1}\right)^{2} \equiv 1+2^{k} \quad\left(\bmod 2^{k+1}\right) .
$$

Proposition 2.4. Suppose that $\left\{u_{i}\right\}$ is the two-term recurrence sequence defined above.
(a) If $k>1$ and $t=0$, then $u_{n+2^{k}} \equiv u_{n}+2^{k}\left(\bmod 2^{k+1}\right)$.
(b) If $k>t$ and n is even, then $u_{n+2^{k-t}} \equiv u_{n}+2^{k}\left(\bmod 2^{k+1}\right)$.
(c) If $k>s, 0<s<2 t$, and n is odd, then $u_{n+2^{k-s}} \equiv u_{n}+2^{k}\left(\bmod 2^{k+1}\right)$.
(d) If $k>2 t+1,0<2 t<s$, and n is odd, then $u_{n+2^{k-2 t} \equiv} u_{n}+2^{k}$ $\left(\bmod 2^{k+1}\right)$.
(e) If $k>r+1,0<r<2 t$, and n is odd, then $u_{n+2^{k-r}} \equiv u_{n}+2^{k}$ $\left(\bmod 2^{k+1}\right)$.
(f) If $k>2 t+1,0<2 t<r$, and n is odd, then $u_{n+2^{k-2 t} \equiv} u_{n}+2^{k}$ $\left(\bmod 2^{k+1}\right)$.

Proof. (a) By Fact 1,

$$
\begin{equation*}
u_{n+2^{k}}=b u_{n-1} u_{2^{k}}+u_{n} u_{2^{k}+1} . \tag{2.2}
\end{equation*}
$$

Suppose that n is odd. Then Fact 3 implies that u_{n-1} is even and u_{n} is odd. Hence, by Lemma 2.1, $b u_{n-1} u_{2^{k}} \equiv 0\left(\bmod 2^{k+1}\right)$. Then Lemma 2.3(a) and (2.2) imply that $u_{n+2^{k}} \equiv u_{n}+2^{k}\left(\bmod 2^{k+1}\right)$.

Now suppose that n is even. Then Fact 3 implies that u_{n} is even and u_{n-1} is odd. Hence, by Lemma 2.1, $b u_{n-1} u_{2^{k}} \equiv 2^{k}\left(\bmod 2^{k+1}\right)$. On the other hand, $u_{n}\left(1+2^{k}\right) \equiv u_{n}\left(\bmod 2^{k+1}\right)$. Thus, Lemma 2.3(a) and (2.2) again imply that $u_{n+2^{k}} \equiv u_{n}+2^{k}\left(\bmod 2^{k+1}\right)$.
(b) Since n is even, Fact 3 implies that u_{n-1} is odd. By Lemma 2.1, $2^{t+k-t} \| u_{2^{k-t}}$, and therefore $u_{2^{k-t}} \equiv 2^{k}\left(\bmod 2^{k+1}\right)$. On the other hand, Fact 2 implies that $u_{2} \mid u_{n}$, and hence $2^{t+1} \mid u_{n}$. Moreover, by Lemma 2.2(a) with $k-t$ in place of $k, u_{2^{k-t}+1} \equiv 1\left(\bmod 2^{k-t}\right)$, and hence $u_{n} u_{2^{k-t}+1} \equiv u_{n}(\bmod$ 2^{k+1}). Consequently, Fact 1 yields

$$
u_{n+2^{k-t}}=b u_{n-1} u_{2^{k-t}}+u_{n} u_{2^{k-t}+1} \equiv u_{n}+2^{k} \quad\left(\bmod 2^{k+1}\right) .
$$

(c) Since n is odd, Fact 3 implies that u_{n-1} is even, and therefore Fact 2 implies that $u_{2} \mid u_{n-1}$. It follows that $2^{t+1} \mid u_{n-1}$. By Lemma 2.1, $2^{t+k-s}| |$ $u_{2^{k-s}}$, and consequently $2^{2 t+k-s+1} \mid b u_{n-1} u_{2^{k-s}}$. Since $2 t-s>0$, it follows that $b u_{n-1} u_{2^{k-s}} \equiv 0\left(\bmod 2^{k+1}\right)$. Finally, by Fact 1 and Lemma 2.3(b),

$$
u_{n+2^{k-s}}=b u_{n-1} u_{2^{k-s}}+u_{n} u_{2^{k-s}+1} \equiv u_{n}+2^{k} \quad\left(\bmod 2^{k+1}\right)
$$

(d), (e), (f) Imitate the proof of (c) using, respectively, Lemmas 2.3(c), 2.3(d), and 2.3(e) in place of Lemma 2.3(b).

3. Periods

If $\left\{u_{\mathrm{i}}\right\}$ is a two-term recurrence sequence, as defined in (1.1), and b is relatively prime to m, then the reduced sequence modulo m is purely periodic. The determination of the periods of reduced two-term recurrence sequences is an interesting open problem—even for the Fibonacci sequence itself (see, e.g., [10]).

If a is even and b is odd, the sequence $\left\{u_{\mathrm{i}}\right\}$ is purely periodic modulo 2^{k} for any positive integer k. We will denote the length of a (smallest) period by λ_{k}. In this section we will completely determine the periods λ_{k} when k is sufficiently large. The periods depend upon the values of the parameters r, s, and t defined in (2.1).

Theorem 3.1. Suppose that $\left\{u_{\mathrm{i}}\right\}$ is a two-term recurrence sequence as defined in (1.1), with a even and b odd.
(a) If $k>1$ and $t=0$, then $\lambda_{k}=2^{k}$.
(b) If $k>s+1$ and $0<s \leq t$, then $\lambda_{k}=2^{k-s}$.
(c) If $k>t$ and $0<t<s$, then $\lambda_{k}=2^{k-t}$.
(d) If $k>r+2$ and $0<r \leq t$, then $\lambda_{k}=2^{k-r}$.
(e) If $k>t+1$ and $0<t<r$, then $\lambda_{k}=2^{k-t}$.

Proof. (a) By Lemma 2.1 and Lemma 2.3(a), $u_{2^{k}} \equiv 0\left(\bmod 2^{k}\right)$ and $u_{2^{k}+1} \equiv 1\left(\bmod 2^{k}\right)$. Thus λ_{k} divides 2^{k}. On the other hand, Lemma 2.1
implies that $u_{2}{ }^{k-1} \equiv 2^{k-1}\left(\bmod 2^{k}\right)$, and it follows that λ_{k} does not divide 2^{k-1}. Thus $\lambda_{k}=2^{k}$.
(b) By Lemma 2.1, $2^{t+k-s} \| u_{2^{k-s}}$. Since $s \leq t$, it follows that $2^{k} \mid u_{2^{k-s}}$, and hence $u_{2^{k-s}} \equiv 0\left(\bmod 2^{k}\right)$. Moreover, by Lemma 2.3(b), $u_{2^{k-s}+1} \equiv 1$ $\left(\bmod 2^{k}\right)$. It follows that λ_{k} divides 2^{k-s}. On the other hand, Lemma 2.3(b) also implies that $u_{2^{k-s}+1} \equiv 1+2^{k-1}\left(\bmod 2^{k}\right)$. Thus λ_{k} does not divide 2^{k-s-1}, and hence $\lambda_{k}=2^{k-s}$.
(c) By Lemma 2.1, $2^{k} \| u_{2^{k-t}}$. Thus $u_{2^{k-t}} \equiv 0\left(\bmod 2^{k}\right)$. Moreover, by Lemma 2.2(b), $u_{2^{k-t}+1} \equiv 1\left(\bmod 2^{k}\right)$. It follows that λ_{k} divides 2^{k-t}. On the other hand, Lemma 2.1 also implies that $2^{k-1} \| u_{2^{k-t-1}}$, and thus $u_{2^{k t-1}} \equiv$ $2^{k-1}\left(\bmod 2^{k}\right)$. It follows that λ_{k} does not divide 2^{k-t-1}, and hence $\lambda_{k}=2^{k-t}$.
(d) Imitate the proof of (b) using Lemma 2.3(d) in place of Lemma 2.3(b).
(e) Imitate the proof of (c) using Lemma 2.2(c) in place of Lemma 2.2(b).

4. Stability

In this section we state and prove the following two theorems.
Theorem 4.1. Suppose that $\left\{u_{i}\right\}$ is a two-term recurrence sequence determined as in (1.1) by parameters a and b, with a even and b odd, and that r, s, and t are defined by (2.1). Then $\left\{u_{i}\right\}$ is stable modulo 2 provided one of the following conditions is true:
(a) $t=0$,
(b) $s \neq 2 t$ and $r \neq 2 t$, or
(c) $a \neq 0$ and $b= \pm 1$.

Theorem 4.2. Suppose that $\left\{u_{i}\right\}$ is a two-term recurrence sequence determined as in (1.1) by parameters a and b, with a even and b odd, and that r, s, and t are defined by (2.1).

If d is any integer, then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$ for all sufficiently large k provided one of the following conditions is true:
(a) $t=0$,
(b) $s \neq 2 t$ and $r \neq 2 t$, or
(c) $a \neq 0$ and $b= \pm 1$.

More precisely, in (a) it is sufficient to require $k>1$ and in (b) and (c) it is sufficient to require $k>2 t+1$.

Note. Condition (c) in Theorems 4.1 and 4.2 corresponds to t being defined while one of r or s is not defined.

The requirement that $t=0$ in (a) of Theorems 4.1 and 4.2 is equivalent to $a \equiv 2(\bmod 4)$. It is worth observing that the sequences $\left\{u_{i}\right\}$ satisfying this condition are uniformly distributed (see, e.g., Theorem 3.5, p. 38 of [6]). We include a proof of stability in this case for completeness.

The proof of Theorem 4.1 requires only a short argument after Theorem 4.2 has been proven. Theorem 4.2 follows from a series of lemmas corresponding to the relationships between the parameters r, s, and t and the parity of d. We defer the proofs of these theorems to the end of the section.

Before presenting the proofs of Lemmas 4.3 through 4.13, we fix some notation and make some observations common to the proofs of each lemma. In each lemma, $\left\{u_{i}\right\}$ will be a recurrence sequence with defining parameters a and b, with a even and b odd. Parameters r, s, and t will be defined by (2.1), and in each lemma, r, s, and t will be subject to certain constraints. The integer k will be fixed in each lemma and subject to a given inequality. In each lemma, d will be a fixed integer and $\nu=\nu\left(2^{k}, d\right)$. Finally, integers n_{i} will be chosen to satisfy

$$
0 \leq n_{1}<n_{2}<\cdots<n_{\nu}<\lambda_{k} \text { and } u_{n_{i}} \equiv d\left(\bmod 2^{k}\right) \text { for each } i .
$$

Clearly, for each i, either $u_{n_{i}} \equiv d\left(\bmod 2^{k+1}\right)$ or $u_{n_{i}} \equiv d+2^{k}\left(\bmod 2^{k+1}\right)$. Finally, by Fact $3, n_{i} \equiv d(\bmod 2)$ for each i.

Lemma 4.3. Suppose that $k>1$ and $t=0$. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.
Proof. Fix an index i such that $0<i \leq \nu$. Since $t=0$, Theorem 3.1(a) implies that $\lambda_{k}=2^{k}$. By Proposition 2.4(a), $u_{n_{i}+\lambda_{k}} \equiv u_{n_{i}}+2^{k}\left(\bmod 2^{k+1}\right)$.

It follows that the elements $\left\{u_{n_{i}}, u_{n_{i}+\lambda_{k}}\right\}$ are congruent modulo 2^{k+1} to d and $d+2^{k}$ in some order. Choose $a_{i} \in\left\{n_{i}, n_{i}+\lambda_{k}\right\}$ such that $u_{a_{i}} \equiv d$ $\left(\bmod 2^{k+1}\right)$. Since $a_{i} \equiv n_{i}\left(\bmod 2^{k}\right)$ and $0 \leq a_{i} \leq 2 \lambda_{k}=\lambda_{k+1}$, it follows that the integers $\left\{a_{1}, a_{2}, \ldots, a_{\nu}\right\}$ are distinct and

$$
\nu\left(2^{k+1}, d\right) \geq \nu=\nu\left(2^{k}, d\right)
$$

The same argument, with $d+2^{k}$ in place of d, yields

$$
\nu\left(2^{k+1}, d+2^{k}\right) \geq \nu\left(2^{k}, d+2^{k}\right)=\nu\left(2^{k}, d\right)
$$

On the other hand, since $\lambda_{k+1}=2 \lambda_{k}$ it follows that

$$
\begin{equation*}
\nu\left(2^{k+1}, d\right)+\nu\left(2^{k+1}, d+2^{k}\right)=2 \nu\left(2^{k}, d\right) \tag{4.1}
\end{equation*}
$$

Therefore the two preceding inequalities are equalities, and the lemma follows.

Lemma 4.4. Suppose that $k>s+1,0<s \leq t$, and d is odd. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. Fix an index i such that $0<i \leq \nu$. By Theorem 3.1(b), $\lambda_{k}=$ 2^{k-s}. By Proposition 2.4(c) (and the observation that n_{i} is odd), $u_{n_{i}+\lambda_{k}} \equiv$ $u_{n_{i}}+2^{k}\left(\bmod 2^{k+1}\right)$.

It follows that the elements $\left\{u_{n_{i}}, u_{n_{i}+\lambda_{k}}\right\}$ are congruent modulo 2^{k+1} to d and $d+2^{k}$ in some order. Choose $a_{i} \in\left\{n_{i}, n_{i}+\lambda_{k}\right\}$ such that $u_{a_{i}} \equiv d(\bmod$ $\left.2^{k+1}\right)$. Since $a_{i} \equiv n_{i}\left(\bmod 2^{k}\right)$ and $0 \leq a_{i} \leq 2 \lambda_{k}=\lambda_{k+1}$, it follows that the integers $\left\{a_{1}, a_{2}, \ldots, a_{v}\right\}$ are distinct and

$$
\nu\left(2^{k+1}, d\right) \geq \nu=\nu\left(2^{k}, d\right)
$$

The same argument, with $d+2^{k}$ in place of d, yields

$$
\nu\left(2^{k+1}, d+2^{k}\right) \geq \nu\left(2^{k}, d+2^{k}\right)=\nu\left(2^{k}, d\right) .
$$

As in Lemma 4.3, the lemma follows from the two preceding inequalities and (4.1).

Lemma 4.5. Suppose that $k>s, 0<t<s<2 t$, and d is odd. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. Fix an index i such that $0<i \leq \nu$. By Theorem 3.1(c), $\lambda_{k}=$ 2^{k-t}. The observation that n_{i} is odd, followed by repeated application of Proposition 2.4(c), yields, for all positive odd integers δ,

$$
u_{n_{i}+\delta 2^{-(s-t)} \lambda_{k}} \equiv u_{n_{i}}+2^{k} \quad\left(\bmod 2^{k+1}\right)
$$

Since $0 \leq n_{i}<\lambda_{k}$ there is a unique integer $\ell_{i} \in\left\{0,1,2, \ldots, 2^{s-t}-1\right\}$ such that

$$
\begin{equation*}
\ell_{i} 2^{-(s-\mathrm{t})} \lambda_{k} \leq n_{i}<\left(\ell_{i}+1\right) 2^{-(s-t)} \lambda_{k} . \tag{4.2}
\end{equation*}
$$

Let $\delta_{i}=2^{(s-t+1)}-2 \ell_{i}-1$. Clearly, δ_{i} is odd and $1 \leq \delta_{i} \leq 2^{(s-t+1)}-1$. Thus

$$
\begin{equation*}
u_{n_{i}+\delta_{i} 2^{-(s-t)} \lambda_{k}} \equiv u_{n_{i}}+2^{k} \quad\left(\bmod 2^{k+1}\right) \tag{4.3}
\end{equation*}
$$

By (4.2),

$$
\begin{align*}
n_{i}+\left(\frac{\delta_{i}}{2^{(s-t)}}\right) \lambda_{k} & \geq\left(\frac{\ell_{i}}{2^{(s-t)}}+\frac{2^{(s-t+1)}-2 \ell_{i}-1}{2^{(s-t)}}\right) \lambda_{k} \\
& =\left(\frac{2^{(s-t+1)}-\ell_{i}-1}{2^{(s-t)}}\right) \lambda_{k} \geq\left(\frac{2^{(s-t+1)}-2^{s-t}}{2^{(s-t)}}\right) \lambda_{k}=\lambda_{k} \tag{4.4}
\end{align*}
$$

Moreover, by (4.2) and Theorem 3.1(c),

$$
\begin{align*}
n_{i}+ & \left(\frac{\delta_{i}}{2^{(s-t)}}\right) \lambda_{k}<\left(\frac{\ell_{i}+1}{2^{(s-t)}}+\frac{2^{(s-t+1)}-2 \ell_{i}-1}{2^{(s-t)}}\right) \lambda_{k} \\
& =\left(\frac{2^{(s-t+1)}-\ell_{i}}{2^{(s-t)}}\right) \lambda_{k} \leq\left(\frac{2^{(s-t+1)}}{2^{(s-t)}}\right) \lambda_{k}=2 \lambda_{k}=\lambda_{k+1} . \tag{4.5}
\end{align*}
$$

Together (4.4) and (4.5) imply that $\lambda_{k} \leq n_{i}+\delta_{i} 2^{-(s-t)} \lambda_{k}<2 \lambda_{k}$.
By (4.3), the elements $u_{n_{i}}$ and $u_{n_{i}+\delta_{i} 2^{(s-t)}}$ (in some order) are congruent modulo 2^{k+1} to d and $d+2^{k}$. Choose $a_{i} \in\left\{u_{n_{i}}, u_{n_{i}+\delta_{i} 2^{-(s-1)}}\right\}$ such that $a_{i} \equiv d$ $\left(\bmod 2^{k+1}\right)$.

We now claim that $\nu\left(2^{k+1}, d\right) \geq \nu\left(2^{k}, d\right)$. It suffices to show that the integers $\left\{a_{1}, a_{2}, \ldots, a_{v}\right\}$ are distinct. To this end, suppose that i and j satisfy $i<j$ and $a_{i}=a_{j}$. Then $n_{i}<n_{j}<\lambda_{k}$. On the other hand, $\lambda_{k}<n_{i}+$ $\delta_{i} 2^{-(s-t)} \lambda_{k}$ and $\lambda_{k}<n_{j}+\delta_{j} 2^{-(s-t)} \lambda_{k}$. This can only occur when

$$
n_{i}+\delta_{i} 2^{-(s-t)} \lambda_{k}=n_{j}+\delta_{j} 2^{-(s-t)} \lambda_{k}
$$

It follows that

$$
\begin{equation*}
n_{j}-n_{j}=\left(\frac{\delta_{i}-\delta_{j}}{2^{s-t}}\right) \lambda_{k}=\left(\frac{2\left(\ell_{j}-\ell_{i}\right)}{2^{s-t}}\right) \lambda_{k} \tag{4.6}
\end{equation*}
$$

On the other hand, by (4.2),

$$
\begin{equation*}
n_{j}-n_{i}<\left(\frac{\ell_{j}+1}{2^{s-t}}\right) \lambda_{k}-\left(\frac{\ell_{i}}{2^{s-t}}\right) \lambda_{k}=\left(\frac{\ell_{j}-\ell_{i}+1}{2^{s-t}}\right) \lambda_{k} \tag{4.7}
\end{equation*}
$$

Together, (4.6) and (4.7) imply that $\ell_{j}-\ell_{i}<1$. However, since $n_{j}>n_{i}$, we know that $\ell_{j}>\ell_{i}$, and therefore $\ell_{j}-\ell_{i}>0$. This contradiction proves the claim.

The same argument, with $d+2^{k}$ in place of d, yields

$$
\nu\left(2^{k+1}, d+2^{k}\right) \geq \nu\left(2^{k}, d+2^{k}\right)=\nu\left(2^{k}, d\right)
$$

As in Lemma 4.3, the lemma follows from the two preceding inequalities and (4.1).

Lemma 4.6. Suppose that either $k>2 t+1,0<2 t<s$, and d is odd or $t>0, k>2 t+1$, s is undefined, and d is odd. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. Fix an index i such that $0<i \leq \nu$. By Theorem 3.1(c), $\lambda_{k}=$ 2^{k-t}. Repeated application of Proposition 2.4(d) (and the observation that n_{i} is odd) yields, for all positive odd integers δ,

$$
u_{n_{i}+\delta 2^{-t} \lambda_{k}} \equiv u_{n_{i}}+2^{k} \quad\left(\bmod 2^{k+1}\right)
$$

The remainder of the proof is similar to the proof of Lemma 4.5. Choose ℓ_{i} such that $\ell_{i} \in\left\{0,1,2, \ldots, 2^{t}-1\right\}$ and

$$
\begin{equation*}
\ell_{i} 2^{-t} \lambda_{k} \leq n_{i}<\left(\ell_{i}+1\right) 2^{-t} \lambda_{k} . \tag{4.8}
\end{equation*}
$$

Define δ_{i} by $\delta_{i}=2^{-t+1}-2 \ell_{i}-1$. As in the proof of Lemma 4.5, it now follows that

$$
\begin{equation*}
u_{n_{i}+\delta_{i} 2^{-t} \lambda_{k}} \equiv u_{n_{i}}+2^{k} \quad\left(\bmod 2^{k+1}\right) \tag{4.9}
\end{equation*}
$$

and

$$
\lambda_{k} \leq n_{i}+\delta_{i} 2^{-t} \lambda_{k}<2 \lambda_{k}
$$

We can now choose $a_{i} \in\left\{u_{n_{i}}, u_{\left.n_{i}+\delta_{i} 2^{-1}\right\}}\right\}$ such that $a_{i} \equiv d\left(\bmod 2^{k+1}\right)$. As in the proof of Lemma 4.5, it is easy to prove that the integers $\left\{a_{1}\right.$, $\left.a_{2}, \ldots, a_{v}\right\}$ are distinct, and therefore

$$
\nu\left(2^{k+1}, d\right) \geq \nu=\nu\left(2^{k}, d\right)
$$

The same argument, with $d+2^{k}$ in place of d, yields

$$
\nu\left(2^{k+1}, d+2^{k}\right) \geq \nu\left(2^{k}, d+2^{k}\right)=\nu\left(2^{k}, d\right)
$$

As in Lemma 4.3, the lemma follows from the two preceding inequalities and (4.1).

Lemma 4.7. Suppose that $k>r+2,0<r \leq t$, and d is odd. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. Fix an index i such that $0<i \leq \nu$. By Theorem 3.1(d), $\lambda_{k}=$ 2^{k-r}. By Proposition 2.4(e), (and the observation that n_{i} is odd) $u_{n_{i}+\lambda_{k}} \equiv$ $u_{n_{i}}+2^{k}\left(\bmod 2^{k+1}\right)$.

It follows that the elements $\left\{u_{i_{i}}, u_{i_{i}+\lambda_{k}}\right\}$ are congruent modulo 2^{k+1} to d and $d+2^{k}$ in some order. As in the proofs of Lemma 4.3 and Lemma 4.4, we can choose distinct $a_{i} \in\left\{n_{i}, n_{i}+\lambda_{k}\right\}$ such that $u_{a_{i}} \equiv d\left(\bmod 2^{k+1}\right)$. Therefore $\nu\left(2^{k+1}, d\right) \geq \nu=\nu\left(2^{k}, d\right)$.

The same argument, with $d+2^{k}$ in place of d, yields

$$
\nu\left(2^{k+1}, d+2^{k}\right) \geq \nu\left(2^{k}, d+2^{k}\right)=\nu\left(2^{k}, d\right)
$$

As in Lemma 4.3, the lemma follows from the two preceding inequalities and (4.1).

Lemma 4.8. Suppose that $k>r+1,0<t<r<2 t$, and d is odd. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. Fix an index i such that $0<i \leq \nu$. By Theorem 3.1(e), $\lambda_{k}=$ 2^{k-t}. The observation that n_{i} is odd, followed by repeated application of Proposition 2.4(e), yields, for all positive odd integers δ,

$$
u_{i_{i}+\delta 2^{-(r-t)} \lambda_{k}} \equiv u_{n_{i}}+2^{k} \quad\left(\bmod 2^{k+1}\right) .
$$

The remainder of the proof parallels the proof of Lemma 4.5.
Lemma 4.9. Suppose that either $k>2 t+1,0<2 t<r$, and d is odd or $t>0, k>2 t+1, r$ is undefined, and d is odd. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. Fix an index i such that $0<i \leq \nu$. By Theorem 3.1(e), $\lambda_{k}=$ 2^{k-t}. Repeated application of Proposition 2.4(f) (and the observation that n_{i} is odd) yields, for all positive odd integers δ,

$$
u_{n_{i}+\delta 2^{-t} \lambda_{k}} \equiv u_{n_{i}}+2^{k} \quad\left(\bmod 2^{k+1}\right) .
$$

The remainder of the proof parallels the proof of Lemma 4.6.
Having treated odd residues, we now turn to the even. Since the proofs of these lemmas follow the same scheme as the previous lemmas, we are content to sketch the proofs.

Lemma 4.10. Suppose that $k>\max (s+1, t), 0<s \leq t$, and d is even. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. By Theorem 3.1(b), $\lambda_{k}=2^{k-s}$. By Proposition 2.4(b), $u_{n_{i}+2^{-(t-s)} \lambda_{k}} \equiv u_{n_{i}}+2^{k}\left(\bmod 2^{k+1}\right)$. The remainder of the proof parallels the proof of Lemma 4.5.

Lemma 4.11. Suppose that either $k>t, 0<t<s$, and d is even or $t>$ $0, k>\mathrm{t}, s$ is undefined, and d is even. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. By Theorem 3.1(c), $\lambda_{k}=2^{k-t}$. By Proposition 2.4(b), $u_{n_{i}+\lambda_{k}} \equiv$ $u_{n_{i}}+2^{k}\left(\bmod 2^{k+1}\right)$.

As in Lemma 4.3, we can choose distinct $a_{i} \in\left\{n_{i}, n_{i}+\lambda_{k}\right\}$ such that $u_{a_{i}} \equiv\left(\bmod 2^{k+1}\right)$. Therefore $\nu\left(2^{k+1}, d\right) \geq \nu=\nu\left(2^{k}, d\right)$.

The same argument, with $d+2^{k}$ in place of d, yields

$$
\nu\left(2^{k+1}, d+2^{k}\right) \geq \nu\left(2^{k}, d+2^{k}\right)=\nu\left(2^{k}, d\right)
$$

As in Lemma 4.3, the lemma follows from the two preceding inequalities and (4.1).

Lemma 4.12. Suppose that $k>\max (r+2, t), 0<r \leq t$, and d is even. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. By Theorem 3.1(d), $\lambda_{k}=2^{k-r}$. By Proposition 2.4(b), $u_{n_{i}+2^{-(t-r)} \lambda_{k}} \equiv u_{n_{i}}+2^{k}\left(\bmod 2^{k+1}\right)$. The remainder of the proof parallels the proof of Lemma 4.5.

Lemma 4.13. Suppose that either $k>t+1,0<t<r$, and d is even or $t>0, k>t+1, r$ is undefined, and d is even. Then $\nu\left(2^{k+1}, d\right)=\nu\left(2^{k}, d\right)$.

Proof. By Theorem 3.1(e), $\lambda_{k}=2^{k-t}$. By Proposition 2.4(b), $u_{n_{i}+\lambda_{k}} \equiv$ $u_{n_{i}}+2^{k}\left(\bmod 2^{k+1}\right)$.

As in Lemma 4.3, we can choose distinct $a_{i} \in\left\{n_{i}, n_{i}+\lambda_{k}\right\}$ such that $u_{a_{i}} \equiv d\left(\bmod 2^{k+1}\right)$. Therefore $\nu\left(2^{k+1}, d\right) \geq \nu=\nu\left(2^{k}, d\right)$.

The same argument, with $d+2^{k}$ in place of d, yields

$$
\nu\left(2^{k+1}, d+2^{k}\right) \geq \nu\left(2^{k}, d+2^{k}\right)=\nu\left(2^{k}, d\right)
$$

As in Lemma 4.3, the lemma follows from the two preceding inequalities and (4.1).

Now, we turn to the proofs of Theorems 4.1 and 4.2.
Proof of Theorem 4.2. First note that if $t=0$, then the proposition follows from Lemma 4.3.

Next, suppose that r, s, and t are all defined. If $s=0$ then $r>0$ and there are two cases: either $0<r \leq t$ and the proposition follows from Lemmas 4.7 and 4.12 or $0<t<r$ and the proposition follows from Lemmas 4.8, 4.9, and 4.13. If $s>0$ then there are two additional cases: either $0<$ $s \leq t$ and the proposition follows from Lemmas 4.4 and 4.10 or $0<t<s$ and the proposition follows from Lemmas 4.5, 4.6, and 4.11.

Now, suppose that t is defined and $t>0$, but that r is not defined. Then the proposition follows from Lemmas 4.9 and 4.13.

Finally, suppose that t is defined and $t>0$, but that s is not defined. Then the proposition follows from Lemmas 4.6 and 4.11.

Finally, we prove Theorem 4.1.
Proof of Theorem 4.1. Assume the hypotheses of Theorem 4.1. By Theorem 4.2, for all sufficiently large k,

$$
\begin{aligned}
\Omega\left(2^{k+1}\right) & =\left\{\nu\left(2^{k+1}, d\right) \mid 0 \leq d<2^{k+1}\right\} \\
& =\left\{\nu\left(2^{k+1}, d\right) \mid 0 \leq d<2^{k}\right\} \cup\left\{\nu\left(2^{k+1}, d+2^{k}\right) \mid 0 \leq d<2^{k}\right\} \\
& =\left\{\nu\left(2^{k}, d\right) \mid 0 \leq d<2^{k}\right\} \cup\left\{\nu\left(2^{k}, d\right) \mid 0 \leq d<2^{k}\right\} \\
& =\Omega\left(2^{k}\right) \cup \Omega\left(2^{k}\right)=\Omega\left(2^{k}\right) .
\end{aligned}
$$

Thus $\Omega\left(2^{k+1}\right)=\Omega\left(2^{k}\right)$, as desired.

5. Addendum

As we noted after (2.1), the parameters r, s, and t are not always defined. In particular, t is not defined when $a=0, r$ is not defined when $b=1$, and s is not defined when $b=-1$. By Theorem 4.1 the sequence $\left\{u_{i}\right\}$ is stable when $a \neq 0$ and either $b=1$ or $b=-1$. For completeness we consider here the case that $a=0$. As we will show, for most values of b these sequences are not stable.

Suppose that $a=0$, so that t is not defined. Clearly the sequence $\left\{u_{i}\right\}$ has the form

$$
\begin{equation*}
0,1,0, b, 0, b^{2}, 0, b^{3}, \ldots \tag{5.1}
\end{equation*}
$$

If $b= \pm 1$, stability of the resulting sequences is obvious: a single period of the sequence modulo 2^{k} is either 0,1 (if $k=1$ or $b=1$) or $0,1,0,-1$ (if $k>1$ and $b=-1$). Consequently $\Omega\left(2^{k}\right)=$ of $\{0,1\}$ for all $k \geq 2$ in the first case and $\Omega\left(2^{k}\right)=$ of $\{0,1,2\}$ for all $k \geq 2$ in the second.

If $b \neq \pm 1$ the period λ_{k} and the frequency distribution function $\nu\left(2^{k}, d\right)$ depend upon the multiplicative order of b modulo 2^{k}. On the other hand, if $b \neq \pm 1$ then r and s are defined and the multiplicative order of b modulo 2^{k} can be computed in terms of r and s.

Theorem 5.1. Suppose that $a=0$ and $b \neq \pm 1$.
(a) If $s>0$ and $k>s$ then $\lambda_{k}=2^{k-s}$.
(b) If $r>0$ and $k>r$ then $\lambda_{k}=2^{k-r}$.

Proof. We prove (a) and (b) simultaneously. Let ℓ be the multiplicative order of b modulo 2^{k}. Then it is clear from (5.1) that $\lambda_{k}=2 \ell$.

Now, the group of units modulo 2^{k} is a 2 -group, so, by Lagrange's theo-
rem, the order of b is a power of two. Moreover, an easy inductive argument shows for all $j \geq 0$ that $2^{s+j+1} \| b^{2^{j}}-1$ under hypothesis (a) and for all $j \geq 1$ that $2^{r+j+1} \| b^{2^{j}}-1$ under hypothesis (b). Therefore $\ell=2^{k-s-1}$ and $\ell=2^{k-r-1}$ are the least powers of b such that $b^{\ell} \equiv 1\left(\bmod 2^{k}\right)$ under hypotheses (a) and (b), respectively.

Theorem 5.2. Suppose that $a=0$ and $b \neq \pm 1$.
(a) If $s>0$ and $k>s$ then $\nu\left(2^{k}, 0\right)=2^{k-s-1}, \nu\left(2^{k}, b^{j}\right)=1$ for all j, and $\nu\left(2^{k}, d\right)=0$ otherwise.
(b) If $r>0$ and $k>r$ then $\nu\left(2^{k}, 0\right)=2^{k-r-1}, \nu\left(2^{k}, b^{j}\right)=1$ for all j, and $\nu\left(2^{k}, d\right)=0$ otherwise.

Proof. As in Theorem 5.1, let ℓ be the multiplicative order of b modulo 2^{k}. Then the powers of b below ℓ have distinct nonzero residues modulo 2^{k}, and it follows that $\nu\left(2^{k}, b^{d}\right)=1$ for all d. Moreover, it is clear from (5.1) and Theorem 5.1 that $\nu\left(2^{k}, 0\right)=2^{k-s-1}$ and $\nu\left(2^{k}, 0\right)=2^{k-r-1}$ under hypotheses (a) and (b), respectively. Finally, in both cases it follows from (5.1) that $\nu\left(2^{k}, d\right)=0$ when d is neither 0 nor a power of b.

Corollary 5.3. If $a=0$, then $\left\{u_{i}\right\}$ is stable when $b= \pm 1$ and is not stable for all other odd b.

References

1. W. Carlip and E. Jacobson, A criterion for stability of two-term recurrence sequences modulo 2^{k}, Finite Fields Appl. 2 (1996), 369-406.
2. W. Carlip and E. Jacobson, On the stability of certain Lucas sequences modulo 2^{k}, Fibonacci Quart. 34 (1996), 289-305.
3. W. Carlip and E. Jacobson, Unbounded stability of two-term recurrence sequences modulo 2^{k}, Acta Arith. 74 (1996), 329-346.
4. R. D. Carmichael, On sequences of integers defined by recurrence relations, Quart. J. Pure Appl. Math. 48 (1920), 343-372.
5. E. T. Jacobson, Distribution of the Fibonacci numbers mod 2^{k}, Fibonacci Quart. (1992), 211-215.
6. W. Narkiewicz, "Uniform Distribution of Sequences of Integers in Residue Classes," Lecture Notes In Mathematics, Vol. 1087, Springer-Verlag, New York, 1984.
7. J. Pihko, A note on a theorem of Schinzel, Fibonacci Quart. 29 (1991), 333-338.
8. P. Ribenboim, "The Little Book of Big Primes," Springer-Verlag, New York, 1991.
9. A. Schinzel, Special Lucas sequences, including the Fibonacci sequence, modulo a prime, in "A Tribute to Paul Erdõs (Cambridge, England)" (A. Baker, B. Bollobás, and A. Hajnal, Eds.), pp. 349-357, Cambridge Univ. Press, Cambridge, 1990.
10. D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525-532.
11. M. Ward, The arithmetical theory of linear recurring series, Trans. Amer. Math. Soc. 95 (1933), 600-628.
