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On the Ad61e rings of radical extensions of the rationals 

By 
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1. Introduction. In 1926, Gassman [2] discovered that algebraic number fields are not 
completely determined by their zeta functions. Subsequently, Perlis [9] produced two 
infinite families of pairs of nonisomorphic fields with identical zeta functions. Following 
Perlis, we call two number fields arithmetically equivalent if their zeta functions coincide. 

Komatsu [7, 8] showed that if k >_- 3 and X 2~ - a is irreducible over I1~, then the fields 
2 ~ 2 k I1) ( ( ~ )  and I!~ ( ~ .  x/2) are arithmetically equivalent. Under the added assumption that 

a is square-free, he also settled the more delicate question of determining when the Ad61e 
rings of these fields are isomorphic. 

Our present effort amounts to a complete description of those integers n, a, b for which 
the Ad61e rings of Q ( @ )  and I1~ (~r are isomorphic. Along the way we will also give a 
characterization of when these two fields are arithmetically equivalent. Of course, if these 
fields are isomorphic, then there is nothing to be done, so it is important to be able to 
recognize such an isomorphism. This problem, however, has already been solved (see 
[1, 10]). In order to state the result, we develop some terminology. 

In what follows we shall have no need for explicit mention of the zeta function (see 1.2), 
thus the notation (,  is reserved for a primitive n-th root of unity. For any t, set 
tit = ( 2  t -~- ~ 2  t l .  For any field F (with char(F) 4= 2) define T as follows: if t h ~ F for all t, 
set T =  o% otherwise let T =  max {t: t/t~ F}. This is well defined since if rlt~ F then the 
equality th z = 2 + t h_ a implies that t/j E F for all j < t. 

1.1 Theorem. Let F be afield with char(F) 4= 2 and suppose X" - a, X" - b are irredu- 

cible over F. Then the fields F(@), F(~fb) are F-isomorphic if and only if one of the 
following holds: 

(i) a b i ~ F" for some i with (i, n) = 1, or 
(if) T <  o % 2 r + l [ n , - a ~ F  2, -beFZ,  andabi(2 +tlr)"/2~F"forsomeiwith(i,n) = 1. 

R e m a r k .  Since (4 + ~ 1 = 0 and (8 + ~81 = / ~ ,  it follows that in the case F = II) 
we have T = 2. Note the similarity of 1.1 with 1.3 to follow. 
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If F is an algebraic number field, then (9 v denotes the ring of integers in F, while d F 
will denote the Ad61e ring of F. For any prime P of F, Fe is the completion of F at P. If 
p is a rational prime, and p factors p(9 F = p[1.....poeg, where the inertial degrees 
fi = f (Pi/P) are arranged so that f / <  fl + 1, then the tuple S r (p) = (fl,... ,fo) is called the 
splitting type ofp in F. The importance of splitting types to our work is indicated by the 
following result ([9], Theorem 1). 

1.2 Theorem. Let E and F be two algebraic number fields. Then the following are 
equivalent. 

a) E and F are arithmetically equivalent. 
b) SE(p) = SF(p) for all but finitely many primes p ~ 7Z. 
c) Sg (p) = St (p) for all primes p ~ 7Z. 

Furthermore, if E and F are arithmetically equivalent, then their Galois closures coincide. 

If K/F is a finite extension of number fields, we denote S(K/F) = {P c (gv: P has a 
prime divisor in (9~ of relative inertial degree 1 over P}. Two fields K1, K 2 are said to be 
Kronecker equivalent over F if the sets S (K 1/F), S (K2/F) differ by at most finitely many 
elements. We will need the main result of Gerst [3]. 

1.3 Theorem. Let X" - a, X" - b be irreducible over ~. Then the fields ~ (~v/a), ~ (~/b) 
are Kronecker equivalent over ff~ if and only if either 

(i) a bi~ ~n for some i with (i, n) = 1, or 
(ii) 8 1 n and a b i 2 "/2 ~ ~" for some i with (i, n) = 1. 

By 1.2, note that if K~, K 2 are arithmetically equivalent then they are Kronecker 
equivalent over ~. The reverse implication does not hold since Kronecker equivalence 
does not even imply that the fields have the same degree over Q. Even if one restricts to 
fields of the same degree, Kronecker equivalence does not imply arithmetic equivalence 
for the following reason. If K 2 is arithmetically equivalent to K1, then K 2 is contained 
in the Galois closure of K1, so there are only finitely many fields arithmetically equivalent 
to K 1. However, Jehne [5] has shown that if L/tI~ is cyclic of odd order, then there are 
infinitely many fields K with [K : L] = 2 with each K Kronecker equivalent to L (and thus 
to each other). Thus, if K is any one of these, then there are infinitely many fields 
Kronecker equivalent to K having the same degree over II~. Thus, there must exist a pair 
of such fields which are Kronecker equivalent but not arithmetically equivalent. 

Finally, for the study of Adele rings, we state the following result due to Iwasawa ([4], 
Lemma 7). 

1.4 Theorem. IfK a , K 2 are two algebraic number fields, then the Adkle rings of K 1 and K 2 
are isomorphic if and only if for every prime p ~ Z there is a bOection between the prime divi- 
sors of p in K 1 with the prime divisors of p in K2 such that the corresponding completions are 
isomorphic. That is, d~l ~- dK2 if and only if K 1 | ~p ~- K2 | ~ (l)v, for all primes p ~ 2L 

1.5 Corollary. If K 1 ,  K 2 are two number fields with isomorphic Adkle rings, then K1, K 2 
are arithmetically equivalent. 


