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1. INTRODUCTION

Let G be a finite group, and let B(G) denote the Burnside ring of G, that
is, the Grothendieck ring constructed on the category of finite G-sets under
disjoint union and cartesian product (see [2] for a more complete descrip-
tion). As Solomon [9] pointed out, the structure of B(G) becomes trivial
upon scalar extension to Q; indeed, Q ®  B(G) is isomorphic with a finite
product of copies of Q. It is natural to ask for a similar result when Q is
replaced by the prime field Z, of integers modulo p. The purpose of the
present paper is to determine the structure of the ring B,(G)=Z,® , B(G).
As we shall see, if p | |G|, then the structure of B,(G) is quite complex.

We begin with some notational conventions. Let P = P(G) denote the set
of all conjugacy classes of subgroups of G. For each b e P, pick a represen-
tative H, of b, and let S, denote the transitive G-sct of cosets modulo H,.
Let : denote the class of the trivial subgroup, so that S,=G/{1}. The set P
has a natural partial ordering, where we write a <b whenever H, is sub-
conjugate to H, (denoted H,< H,). Then 1 is the unique minimal element
of P. For a, b, ce P, let V. be the number of orbits in S, x S,, under the
diagonal action of G, which are isomorphic with S, as G-sets. Equivalently,
write G=);_, H,0,H,, then V,_,.=|{iiH,n"H,~H_,}|, where ~
denotes G-conjugacy. For brevity, denote V,,,=V,, and V,,,=V,. For a
G-set S, we let [ S] denote its image in B(G). The following proposition
collects some well-known properties of B(G) (see [3]).

1.1. PROPOSITION. (a) Additively, B(G) is free on the set {[S,]:ae P},
that is, {S,-ae P} is a complete set of representatives of isomorphism
classes of transitive G-sets.

(b) Foranya beP, [S,1[S;]=3ccr V. [S.], that is, the V,_ are
structure constants for B(G).
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(c) Foranya b,ceP, V. =0 unless both c<a and c<b.
(d) For any aeP, V,=(NgH,). H,).

For the remainder of this paper, assume we have a fixed finite group G.
For brevity, we denote B, = B,(G), and B= B(G). Even though B does not
embed faithfully in B,, the natural isomorphism B, ~ B/pB implies that we
may consider B,= @,.p Z,[S,], where multiplication is given by 1.1(b)
by reducing the V,,. modulo p.

2. THE RaDICAL OF B,

If Sis a G-set, and H < G, then S* denotes the set of H fixed points in
S. For any aeP, there is a ring homomorphism ¢,: B—Z given by
$A[S])= 5" (see [2]), in particular, #,([S,])= V.- The product map
¢=(4,): B—11,.prZ is injective. By reducing modulo p, there are induced
ring homomorphisms ¥ ,:B,-Z, and ¥ =(y,): B,>[1,cpZ,, where
¥ ([S,])=V,.€Z,. However, § need not be injective.

2.1. LeMMA. ¥ is injective if and only if pV\G|. In this case, ¥ is an
isomorphism.

Proof. = I p||G|, then Yy ([S,])=V,=|G]=0, and for any other
aeP, Yy ([S,1)=V,=0 by L.1{c), since asi. Thus, [S,]eker .

<= Suppose 0#x=3,r,[S,]ekery, and choose ge P maximal with
r,#0. For any other ce P, r.#0 implies g & ¢, so that V' =0. Then,
O=y (x)=2,rsVyy=r,V,, so that p|V,. It follows that p||G|. By
counting Z,-dimensions, ¥ is injective if and only if it is an
isomorphism. |

We let J,=J(B,) denote the Jacobson radical of B,.
2.2. ProposITION.  J,=ker §.

Proof. < Recall that J, is the intersection of the annihilators of all
simple B,-modules. For any ae P, Z, becomes a simple B,-module via y,,.
Thus, if xeJ,, then ¥ ,(x)'Z,=0, so that y,(x)=0, all ae P. It follows
that x e ker .

2 If pV|G|, then ker y =0 by 2.1, and the inclusion is clear. Thus we
may assume p | |G|. Let 0#x=3,r,[S,]ekery. It is sufficient to show
that x is nilpotent, and this we accomplish by induction on
n(xy=max{|H,l:r,#0}. If n(x)=1, then x=r[S] so that
x?’=r? |G| [S,]=0 since p||G|. Assume n{x)>1. It is enough to show
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that n(x?)<n(x), since induction then implies x> (hence x also) is
nilpotent. Since x € ker i, we have the equations:

Y r V=0 allaeP. (1)
b
Therefore,
x’= Z ot Veal Sal
b,e,d
=Z r. <Z ry Vbc) [S.1+ Z ol Vpeal Sal
¢ i db:l('
= 2 ror Vel Sal (by (1));
db,<('('
thus

e-3(3 (g am) [5.0= LS. 2)

d Nex>d

Fix ge P with r, #0 and n(x)=|H,|. It is sufficient to show that ¢,#0
implies |H,| <|H,|. By (2), if 1,#0, then there exists ¢>d with r.#0.
Then |H,| <|H|<|H,. |

2.3. COROLLARY. B, is semisimple if and only if PV|G|. In fact, if
pV\G|, then B,~7, + -+ + Z,, | P|-times.

3. THE DIMENSION OF THE RADICAL

Fix any a, be P, and assume that a <b. Define T={ceG: H < H,}. If
oeT, then H,6N H,)< T, so that T is a union of H,— Ng(H,) double
cosets. Fix a double coset decomposition T=J%_, H,1;Ng(H,) (possibly
k=0), and write G=T v (J;_, H,0,H,, where H% ¢ H, for 1 <i<s. Let
t=V,=(Ng(H,): H,), and write Ng(H,)=p,H, v - v p,H,.

3.1. LemMA. If H,t,p,H,=H,t,p, H}, then j=k.

Proof. Write 1,p,=h,1,p4h,, for some h eH, h,eH, Then
pi'p=pi 't up=pi 1y tipih, € Hy,  since 17 'hyt,€e Hy,  and
px€ Ng(H,). Thus p,H,=p,H,, so that j=k. ||

3.2. PROPOSITION. For any a,be P, V, | V,,.
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Proof. 1If a € b, then V,,=0 and the result is clear. Assume a < b. Then
by 3.1, we have (with the above notation) the disjoint double coset decom-
position;

k
G= U Uj:tl HyrpH,w\),2, H0,H,.

i=1

Therefore,

S, xS, =G/H,xG/H,

~ ;5 U; L1 G/HynHP o ), 2 G/Hy, N HY

~{, 5,2, G/H,w ) G/H,  where a;<a,alli

i=1

= (kt)- S, w U S,..

i=1

We conclude that V,,=kt=kV,,so V,| V,,. |

For the remainder of this paper, “dimension” will mean dimension as a
Z ,-space.

3.3. ProrosiTION.  dim(J,) = [{a:p | V,}I.

Proof. 1f p} |G| the result is clear, so assume that p | |G|. Extend the
partial ordering < on P to a total ordering so that H,< H, implies a<b
(but not necessarily the converse). Set n=|P|, and define a map
B,~»ZW=17,x -+ xZ, (n-times) by sending x=3,r,[S,] to the vector
X = (.., p,...), ordered by <. Then x — x defines a Z,-space isomorphism.
Let M be the matrix (V,,), considered as a linear transformation by right
multiplication on Z!". Note that x=3,r,[S,]eJ, iff xekery iff
YorsVey,=0 all aeP iff x-M=0 iff xeker M. Hence the map x — x
restricts to a Z,-space isomorphism J, — ker M. In particular, we conclude
that dim(J,) + rank(M) = | P|. Since M is lower triangular, and since a zero
diagonal entry occurs if and only if the entire row is zero (by 3.2), it follows
that rank(M)=|{a:p | V,}|, giving our result. [

4. IDEMPOTENTS IN B,

In this section we use the map ¢ to construct the primitive idempotents
of B,. Fix a prime peZ, then define P*=P*G)={a:p|V,}. Let
n(p)=|P*|. By 3.3, B,/J,~im(y) is a semisimple subalgebra of I1,.,Z,
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of dimension #(p). By Wedderburn’s theorem, im{() is isomorphic with an
algebra product of field extensions of Z,. By noting that no element in
im{y ) has multiplicative order larger than p — 1, it follows that there is an
algebra isomorphism o:im{y)->T[/"Z,. Let 6,e[1/*)Z, be the
primitive idempotent corresponding to projection onto the ith coordinate.
For each i, choose x;€ B, with ayy(x,)=0,. Then oys(x? —x,}) =0, so that
x;—x;ekery=J,, that is, x, is idempotent modulo J,. By a standard
lifting theorem [7, p.97], there are idempotents e, B, such that e, =x;
(mod J,), i=1,.., n(p). We now establish some properties of the idem-
potents {e;:i=1,.., n(p)}.

4.1. LemMA. The idempotents {e, i=1,..,n(p)} are distinct, pairwise
orthogonal, and sum to 1. Moreover, each e, is primitive.

Proof. Uf e;=e; then §,=V(e;)=¥(e;)=4,, so i=j. For orthogonality,
if i#j then oy(e,e;)=0,0,=0, hence e,e;eker iy =J,. Since e;e; is idem-
potent, and J, is nilpotent, e;e;=0. To see that },e;=1, note that
oY(T.e)=%;0,=1=0y(1), so that 1 -3, e,eJ,. As above, this implies
1—-3,e,=0

To see that each e, is primitive, let fe B, be idempotent with fe,# 0. We
must show fe,=e, Write oy/(f)=3,.59,, for some S< {1,..,n(p)}. If
i€ S then 0=o0y/(f) é,=oy(fe;) implies fe,e J,, so that fe,=0 contrary to
assumption. Hence ieS. Since f=3,.5e; (modJ,), we have fe,=e,
(mod J,). As in the preceding paragraph, this implies fe,=e,. |

To aid in the statement of the next lemma, we (temporarily) write
e;=3,¢,[S,] some c,eZ, i=1,.,n(p)

4.2. LemMA. (a) For any i, if ae P is maximal with ¢, #0, then ae P*
and c,,= V.

(b) Suppose i#j, and choose a, b maximal with c,,, c; #0, respec-
tively. Then a+ b.

(c) Each idempotent e; contains a unigue maximal a< P* with ¢, #0.
If i #]j, then these maximal elemenis are distinct.

Proof. A simple computation using ¢? =¢; and maximality of a yields
e,=ciV,[S,] (mod ®,.,Z,[8,1). Thus ¢, =c%V,#0, so aeP* and
¢, = V7!, proving (a).

(b) If a=b, then O=ee;=c,c,[S.]° (mod ®,,,2Z,[S,])=
€iuCiaV,[S.] (mod @, ., Z,[S,]). This implies ¢, c, V,=0, contrary to
(a).
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(c) Let n, be the number of maximal elements occuring in e,. Then
by (b), |P*| =23 ;n,23Y.;1=|P*|, forcing n,= 1, all i. The second statement
restates part (b). |

For each ae P* let e,=3, 4,[S,] be the primitive idempotent of B,
with ,,=VVand 1, =0if b £ a. By 4.2 the idempotents {e,: ae P*} arc
just the idempotents {e;: i=1,.., n(p)} relabeled. Relabel the x’s and 8;s
accordingly, so that oy(x,)=4, and e,=x, (modJ,). For be P*, let
7y [ 1,epe Z,— Z, be projection onto the h-th coordinate.

4.3. THEOREM. Let G be a finite group, and peZ be a prime. Then
B,(G)~TT1,cp~ L,, where for be P*, L,=B,G)e, is a local ring with
residue field 7 ,.

Proof. For each be P*, define t,: B,e, > Z, by 1,=n,00. We claim
that J(B,e,)=ker 1,. To see this suppose first that xe,eJ(B,e,). Then
xe, € B, is nilpotent, so that xe,e J(B,)=ker y ker t,. Conversely, let
xe,ckert,. Note that oy(xe,)=0cy(xe,e,)=0c¥(xe,)d,  Since
7y (I Tscpe Z,) 8, = Z, is an isomorphism, it follows that oy(xe,) =0, that
is, xe,ekery =J(B,). Then xe,eJ(B,)e,=J(B,e,), finishing the claim.
By the first homomorphism theorem we conclude B,e,/J(B,e,)=Z,, so
B,e, is a local ring with residue field Z,. The remainder of the theorem is
clear, since by 4.1, B,=B,(3 e, ) =11, (B,e,). |

4.4. CorROLLARY. G is a p-group if and only if B,(G) is a local ring.

Proof. = 1If G is a p-group and Hc G, then H< Ny(H). Thus,
|P*| =1, and the result follows from 4.3.

< Let H be p-Sylow in G. Then p | (Ng(H): H), so H represents a class
in P*. However, if B,(G) is local, then by 4.3, |P*| =1. Thus H and G are
conjugate, that is, H=G. |

5. DIMENSION OF THE LoCcAL DIRECT FACTORS

Fixed throughout this section is a prime pe Z. For any ae P* and be P,
Vi(e,) is an idempotent in Z,, hence ¥,(e,) e {0, 1}. We define the “sup-
port of a modulo p” to be supp(a)={beP:y,le,)=1}. Thus,
|supp(a)| = 1iff y(e,) is a primitive idempotent of [],.» Z,,. Our first objec-
tive is to establish the identity: ¥, . p- |supp(a)| = |P|.

5.1. LEMMA. (a) If a+#b, then supp(a)nsupp(b)= .

481/99/1-5
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(b) For any be P, there exists ae P* (unique by part (a)) such that
b e supp(a).

(c) For any ae P*, supp(a)n P* = {a}.

Proof. (a) Suppose desupp(a)nsupp(d), so that ¥ le,) =y (e,)=1.
Then 1 =y (e,) Y le,) =4 e, e,) =y £0)=0, a contradiction.

(b) If bésupp(a) for all aeP* then 1=y, (1)=y,2,e,)=
3 ¥le,) =0, contradiction.

(C) Since lpa(ea) = ‘/’Q(staiab[sb]) = st::j’ab Vba = Aaa Va = 1’
ae supp(a). If also b e supp(a) n P*, then besupp(a)nsupp(db)=. |

5.2. COROLLARY. Y ,.p» |supp(a)] =|P|.
Proof. By 5.1, P=),p.supp(a). |

53. LEMMA. If ae P* then the set {[S,]e,:besupp(a)} is a linearly
independent subset of B,e,.

Proof. For brevity denote S=supp(a). If be S, then y,(e,) =1 implies
2chaV=1 Thus [S,]e,=% uraValSal=[S,] (mod @, _,
Z,[S.]). Suppose there is a dependence relation ¥, .sr,[S,]e,=0, for
some 7, € Z,, and fix g € § maximal with r, #0. Thus r, # 0 implies g < b if
b#g, sothat [S,1¢® ., Z,[S.] Let S'={beS:b+#g,r,#0}, and let /
be the ideal: I=(3, s> .<s Z,[S. D+ (Xuc,Z,[S,]). By the com-
putation above, 0=3,.57,[S;]e,=r,[S,] #0 (modI), a contradic-
tion. |

5.4. THEOREM. Let aeP*. Then dim(B,e,)=|supp(a)l. Moreover,
{[S,1e,:besupp(a)} is a Z,basis of B,e,, and {[S,]e,: besupp(a),
b#a} is a Z,basis of J(B,e,). In particular, J,=@® ,cp+
@besupp(a),b#a Zp[Sb] €y-

Proof. By 52 and 53 we have dim(B,)=3,.pdim(B,e,)>
3 .c p+ |supp(a)|l = | P| = dim(B,), and equality must hold thoughout. Thus,
dim(B,e,) = [supp(a)|, and the second statement follows from 5.3. Next,
note that if besupp(a) and b+#a, then by 5.1(c), b¢ P*. Thus by 3.2,
[S,1ekery=J,, so that [S,]e, e J(B,e,). Since B,e, local, a dimension
count now implies the third result. ||

Because of 5.4, it would be helpful to have a formula for the “modular”
idempotents of B,. The techniques used by Gluck [4] fail to work in our
situation; however, there is another approach which gives a formula for
these idemptotents modulo the radical J,. It is convenient to extend the
ordering < on P to a total ordering, so that H,< H, implies a < b, but not
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necessarily conversely. We introduce some auxiliary matrices. Define
M= (Vab)a,be P> Mp = (Vab)a,beP" and M: = (Vab)ae P* be P We consider
M,, M} to have entries in Z,,, so that their arithmetic is modulo p. In par-
ticular, M, is nonsingular since it is lower triangular with nonzero diagonal

entries. Define N, to be the matrix product: N,=M;'M}=

(Wab)aeP*.bE P

5.5. ProposITION.  (a) M, '=(Au)apepe

(b) For any aeP*, Y(e,)= (.., Wy,..). Thus the ath row of N,
corresponds to the image under \ of e,,.

(c) Supp(a)={b: W,,=1}. In particular, dim(B,e,) =Y, . p W,.

Proof. Let ce P*. Then by 5.1(¢), §,. =V .(e,) = pcp Aas Vs However,
if b¢ P*, then ¥V, =0, whence V,.=0, by 3.2. Thus the sum is over P*, so
that 3", pr A4 Vi = 0,.. Statement (a) follows.

(b) It suffices to show that ¥,(e,)=W,. By part (a) we
have: l/’b(ea) = l//b(Zce P iac[Sc]) = Zce P lac Vcb = Zce p* lac Vcb = Wab’
since V,_,=0if c¢ P*.

(c) Immediate from part (b). |

Thus, modulo J,, we can find the idempotents of B, by inverting the
matrix M,. The following example illustrates the techniques involved.

6. EXAMPLE: G = A4
The purpose of this section is to compute B,(A4s). The conjugacy classes

of subgroups of 45 are 1=({1}), a,=(Z,)p=2,3,5,d,=(D,)p=2,3,5,
b=(A4,), and w=(A4;). The lattice of P(A4) is given by the diagram:
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We extend the ordering < to a total ordering by setting 1<a, <
a;<as<d,<d;<ds<b<w. Itis asimple but tedious task to compute the
double coset decompositions for pairs of subgroups of 45, and then to
compute the constants V, for all a, c e P(A). This information is given by
the matrix

[ 60 A
30 2

2002 Q
12002
M={153003
1021001
6201001
51201001
GERERERREY

We now consider the prime p=2. Then P* = {d,, d;, ds, b, v},
|

e e

M,=] 001 and M;'=f 001
1001 1001
11111 01111
Therefore,
1 11001 11001
OIO OOIOOIO 001001
N,=p1001 JO001001 =40001001
1001 11001001 00000001
01111 111111111 000000001

From 5.5(c) we have supp(d,)={1a,,d,}, supp(ds)={a;,d;},
supp(ds) = {as, ds}, supp(b)={b}, and supp (w)={w}. Also, from
5.5(a), the primitive idempotents of B,(As5) (modJ,(4s)) are
e, =[8,1p=23,5  e,=[S,]+[s,,], and e,=[S,1+[S,]+
[S41+LS,1

From 5.5(c), the dimensions of the local direct factors are 3, 2, 2, 1, 1,
respectively. Moreover, B,(A4;)' e, has 2-nilpotent radical. This follows
from direct computation, using the fact [6, Lemma3] that
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J(By(As5) e,)=Z,1S,1®Z,[S,] (since D, is 2-Sylow in A4;). Algebras
over finite fields of dimension 2 or 3 have been completely classified by
Raghavendran [8, Theorems 10, 11]. In particular, a local ring of dimen-
sion 2 over Z, is isomorphic with the ring of matrices
R,(2)={(§ 5):a,beZ,}, while a local ring of dimension 3 with 2-nilpotent
radical is isomorphic with the ring of matrices

R,(3)=

S O 8
o 8 o

c
0):a,b,cez,,;.
a

From this discussion it follows that: B,(4s)~Z, + Z, + R,(2) +
R,(2) + R,(3). In a similar fashion, the rings B,(45) and Bs(4s) can be
computed. They are

B3(As)~Z, + Z, + Z, + Z, + Z, + R4(2) + R4(2), and
Bs(A)~7s + 25+ Z5+ Z,+ Zs + Zs + Z5 + Rs(2).

7. THE STRUCTURE OF THE SUPPORT

This section is devoted to the problem of giving a non-combinatorial
description of supp(a), for any a € P*. At the heart of this work, and what
follows in Section 8, is the following lemma.

7.1. LeMMA. Suppose ¢, de P are such that H, is G-conjugate to a nor-
mal subgroup of H_ (notation: H, - H_) of p-power index. Then for all
aeP, V=V, (mod)p).

Proof. We may assume H,< H,.. Take H.— H, and H,— H, double
coset decompositions:

Vac k
G=\)HtH,v ) HaH,
e _

i=1

ie
and

V, m
G= \j’i HyoH, o () HipH,,

i=1 i=1

where for all i, H'cH,, Hj<H,, H“ ¢ H,, and H% & H,. Denote
S;=H,0;H, and let S={S,: 1<i<V,,}. Since H, is normal in H_, there
is a well-defined H, action on S given by ¢S;=S; if and only if 65,€ §;, all



68 ELIOT JACOBSON

o€ H.. Evidently, H,<Stab,(S;) and Stab, (S,)=H . n"H, Thus by
hypothesis, |Orb, (S,)| = (H,:Stab, (S;)) is p-power for all i, with
|Orb, (S;) =1 if and only if H'S H,,.

Now observe that V,.=|{a;: H"< H,}|. To see this, define a map from
{o,: H7 < H,} to {r;:1<j<V,} by 0,-7, if and only if 6,e H.1,H,.
Note that H_t.H,=t,H, for 1<i<V,, and if HY<H, then
H,0,H,=0,H,=1,H, for some j, 1 <j<V,. Thus o, t; defines a bijec-
tion. Since S is a disjoint union of H, orbits, Vad=|SIEZH:r,£H“ 1=
{0, HiS H,}| =V, (mod p). 1l

7.2. COROLLARY. (Sylow) If p| |G|, then the number of p-Sylow sub-
groups of G is congruent to one modulo p.

Proof. Let ¢ denote the class of the p-Sylow subgroups. Take d=1 and
a=cin71. |

For any subgroup H < G we let O”(H) denote the (unique) smallest nor-
mal subgroup of H of p-power index.

7.3. THEOREM. Let ac P* and de P. The following are equivalent.

(a) desuppla).

(b) There is a normal chain H,= Hy<H, <1 - <«H,~ H, with each
quotient a p-group.

(C) Op(Ha)stsHa'

Proof. (b)=(a) Induce on n. The case n=0 being clear, assume that
n>=1. Choose ce P with H,~ H,. By induction, ¢ € supp(a). Applying 7.1
we then have Yule,)=3,AunViu=20An Vs =W.e,)=1. Therefore,
d e supp{a).

(a)=>(b) We define the chain inductively. Let H,= H,, and assume we
have constructed Hy<1H,<1--- <aH, with each quotient a p-group.
Choose ce P with H,~ H,. Note that if ce P* then by the implication
(b)=(a) we have desupp{(c) nsupp(a), thus ¢ =a and the chain is com-
plete. If c¢ P* then p | (Ng(H,): H.), so let H< G be such that H/H, is p-
Sylow in Ng(H,)/H.. Then H, 2 H, so there is a subgroup H, , ,~ H with
H,<1H, ., and the quotient a p-group.

(b)<>(c) is standard, and we omit the proof. ||
This Theorem has two interesting corollaries.

7.4. COROLLARY. If p exactly divides |G|, then the local direct factors of
B, have Z ,-dimension either one or two.
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Proof. By 43 and 54 it suffices to show that for any ae P*,
supp(a)| =1 or 2. If p exactly divides |H |, then there can be at most one
normal subgroup of H, of index p, while there can be no such subgroups if
p does not divide |H,|. Apply 7.3. |}

In fact, this Corollary is precise in the sense that if p? | |G|, then the local
direct factor corresponding to a p-Sylow has dimension at least 3 (see [6]).

Using the characterization of dimension 2 algebras over Z, as in Sec-
tion6 we find that if |G| is square free, then for any prime p,
B,(G)~Z! + R,(2)", for some nonnegative integers r, s, depending on p,
with s >0 if and only if p | |G|. Since R,(2) has a unique proper ideal, it is
trivial to check that R,(2) is self-injective. Since it is also Artinian, R,(2) is
quasi-Frobenius. Moreover, the property of being quasi-Frobenius is
invariant under finite direct products and scalar extensions. Hence we
obtain in a more concrete fashion Corollary 2 of [6].

7.5. CoROLLARY. If G has square free order then for any field F,
F ® ; B(G) is a quasi-Frobenius F-algebra.

8. APPLICATIONS TO MODULAR REPRESENTATIONS

We now discuss Z ,-representations of the group G, where we fix a prime
p dividing |G). For any G-set S, the permutation representation of S is
integral, so by reducing modulo p we obtain a Z -representation whose
character will be dnoted by &4. In particular if S=S, we denote by £, the
permutation character 1¢, reduced modulo p. This correspondence yields a
ring homomorphism B(G) - X(G, p), where X(G, p) is the ring of Z,-
characters. Since pB(G) is contained in the kernel of this map, there is a
ring homomorphism 0: B,(G) — X(G, p), where 0 satisfies 8([S])= ¢ for
any G-set S. For each g € G, we let a, € P denote the class of the cyclic sub-
group (o) of G.

8.1. PROPOSITION. (a) Let beP and c€G. Then Ey(o)=V,,, (con-
sidered in Z,). In particular, if b¢ P*, then [S,] €ker 6.

(b) Let aeP* and denote U,={ceG:0"(H,)<{o)><H,}. Then
0(e,) is the indicator function of the set U,. In particular, e, ¢ ker 0 if and
only if H, is p-hyperelementary.

Proof. (a) Let m=(1/|H,|)|{teG:otH,=1tH,}|, then by definition
¢,(6) equals m reduced modulo p. But otH,=1tH, if and only if
(6>'<H,, so that m=V,,, which is the first statement. The second
statement now follows from 3.2.
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(b) Let aeG then by 5.5 we have 8(e,)( 03, 4,05, 1) o)
b tap Ve, = Waa,- Apply 5.5(c) and 7.3 to get the ﬁrst statement. Fmally,
e, ¢ ker 0 if and only if %, is nonempty if and only if O”(H,) is cyclic if and
only if H, is p-hyperelementary. |

It will be helpful to have another description of the sets %,. Towards this
we define, for any p-regular element x of G, the set
S.={oeG: {6')~{x)}, where ¢’ denotes the p-prime part of ¢ (see [5]).

8.2. PROPOSITION. (a) Let ae P* be such that e, ¢ ker 0, and let xe G
be any generator of the cyclic p’-group OP(H,). Then U,= ¥.,.

(b) Conversely, for any p-regular x € G, there exists a unique a€ P*
such that {x>~O*(H,), and for this a, U,= %,.

Proof. (a) Choose be P with H,~O"(H,). If 6%, then H,< (o),
hence <(o'>~H,~{x) implies ce¥. Conversely, if o€ then
H,~{c’y<<{a). Choose ceP* with a,esupp(c). Then by 73,
besupp(c) nsupp(a), whence c=a by 5.1. Thus a,<a, so {(¢)<H,. By
definition, o e Z,.

(b) Say {x)>~H,, some be P, and choose aec P* with besupp(a).
Obviously, H,~O0"(H,), and by part (a), %,= .. Uniqueness follows
directly from 5.1. |

This proposition has a a consequence the following modular version of
the main theorem of Gluck [5].

8.3. THEOREM. Let p be a prime dividing |G|. Then for any p-regular
xeG, the zndzcator functlon I, is in the image of 0. In particular we may
write I, =% yuyl§y, uy€Z,, where the sum ranges over p-hyperelementary
subgroups H satisfying py (Ng(H): H) and H< H,,, where ae€ P* is such that
U=,

Proof. Let ae P* be as in 8.2(b). Since %,= 4, is nonempty, H, and
all subconjugate subgroups are p-hyperelementary. Then, [, =1, =
0e) =0 p<cadap[Ss]) =2 b<aber 4asls- A change of notation gives the
result. ||

We now describe the image of 0. Call a character y: G — Z, p-constant if
whenever o, 1€ G with {(¢'>~ {1'), then y(¢)=x(r). The essence of the
Artin induction theorem is that the corresponding property holds for
rational characters [1, Lemma 39.4], however, it is easy to discover Z,-
characters that are not p-constant. Nevertheless, it is clear that sums and
products of p-constant characters are again p-constant, and we obtain
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8.4. THOREM. The image of 8 is the subring of X(G, p) consisting of
the p-constant characters.

Proof. < By 54 and 8.1(a), it suffices to show that 8([S,] e,) is p-
constant for any a € P*. Choose x € G as in 8.2, and let g, 7 € G be such that
(">~ If 0¢%F, then plainly 1¢%,, hence O([S.]e,)o)=
0([S,]e.)t)=0 in this case. Assume o,te%,. Then by 7.1,
O([Sa]e)(0)=C0) =V, = Vaey = Vaa, = Vaa, = Ealt) = 0([Sa] €,)(7).

> If y is a p-constant character of G, then by definition y is constant
on each of the sets &, for p-regular x e G, hence on each of the sets %,
aeP* Say y(%,)=n,eZ, (n,:=0 if %, is empty). Then y=yx-1=
g' G(IZue P* ea) = ZaeP* e I’ilu = Zae P* naI%a = O(Zue P* naea)e image Of

Finally, as a corollary of this result and 8.3, we obtain the following
modular version of the Artin induction theorem.

8.5. THEOREM. Any p-constant character .G~ Z, is a Z ,-linear com-
bination y=3 uy1$, where H ranges over those p-hyperelementary sub-
groups of G such that p § (Ng(H): H).
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