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1. INTRODUCTION 

Let G be a finite group, and let B(G) denote the Burnside ring of G, that 
is, the Grothendieck ring constructed on the category of finite G-sets under 
disjoint union and Cartesian product (see [2] for a more complete descrip- 
tion). As Solomon [9] pointed out, the structure of B(G) becomes trivial 
upon scalar extension to Q; indeed, Q oz B(G) is isomorphic with a finite 
product of copies of Q. It is natural to ask for a similar result when Q is 
replaced by the prime field Z,, of integers modulo p. The purpose of the 
present paper is to determine the structure of the ring B,(G) = Z, Or B(G). 
As we shall see, if p 1 ICI, then the structure of B,(G) is quite complex. 

We begin with some notational conventions. Let P = P(G) denote the set 
of all conjugacy classes of subgroups of G. For each b E P, pick a represen- 
tative H,, of 6, and let Sb denote the transitive G-set of cosets modulo Hb. 
Let I denote the class of the trivial subgroup, so that S, = G/{ I}. The set P 
has a natural partial ordering, where we write a < b whenever H, is sub- 
conjugate to H, (denoted H,SH,). Then I is the unique minimal element 
of P. For a, 6, c E P, let Vti6‘ be the number of orbits in S, x Sb, under the 
diagonal action of G, which are isomorphic with S,. as G-sets. Equivalently, 
write G = u;=, H,aiHb, then Vrrhc = 1 {i: H, n %Hb- H,} 1, where - 
denotes G-conjugacy. For brevity, denote Vubb = Vob and V,,, = V,. For a 
G-set S, we let [S] denote its image in B(G). The following proposition 
collects some well-known properties of B(G) (see [3]). 

1.1. PROPOSITION. (a) Additively, B(G) is free on the set { [S,]: a E P}, 
that is, (S,: a E P) is a complete set of representatives of isomorphism 
classes of transitive G-sets. 

(b) For any a, bs P, [S,][S,] =CCop Vohr[Sc], that is, the Vahc are 
structure constants for B(G). 
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(c) For any a, b, c E P, VQbc = 0 unless both c 6 a and c < b. 

(d) For any a E P, V, = (N,(H,): N,). 

For the remainder of this paper, assume we have a fixed finite group G. 
For brevity, we denote B, = B,,(G), and B = B(G). Even though B does not 
embed faithfully in B,, the natural isomorphism BP= B/pB implies that we 
may consider B, = Q,, p Z,[S,], where multiplication is given by 1.1 (b) 
by reducing the V,,,, modulo p. 

2. THE RADICAL OF BP 

If S is a G-set, and NQ G, then SH denotes the set of N fixed points in 
S. For any a E P, there is a ring homomorphism ha: B -+ Z given by 
sa( $1; ;lP’;i (see [2]), in particular, #,( [S,]) = Vba. The product map 

= a: -P u E P H is injective. By reducing modulo p, there are induced 
ring homomorphisms II/,: BP + Z$ and $ = (1,6,): B, --, no, p Z,, where 
tl/,(tsJ) = Vba~ &a. H owever, $ need not be injective. 

2.1. LEMMA. 1Gf is ~nje~t~ve if and only if p 1 IG/. In this case, $ is an 
isomorphism. 

Proof. * If p 1 lG1, then $,( [S,])== V,, = lG1 =0, and for any other 
a E P, $u( [S,]) = V,, = 0 by 1.1(c), since C&Z. Thus, [S, J E ker J/. 

(: Suppose 0 # x = Cb r*[S,] E ker $, and choose g E P maximal with 
rR #O. For any other CE P, rc #O implies g 4 c, so that V,= 0. Then, 
0= $g(x)= x6 lb Vbg= rg V,, so that p 1 V,. It follows that p 1 IGJ. By 
counting i2,-dimensions, $ is injective if and only if it is an 
isomorphism. 1 

We let 1, = J(B,) denote the Jacobson radical of BP. 

2.2. PROPOSITION. J,= ker $. 

Proof. E Recall that Jp is the intersection of the annihilators of all 
simple B,,-modules. For any a E P, Z, becomes a simple BP-module via eO. 
Thus, if XE J,, then IL,(x) * Z, ==O, so that tiO(x) = 0, all aE P. It follows 
that x E ker $* 

r> If p 1 lG\, then ker II/ = 0 by 2.1, and the inclusion is clear. Thus we 
may assume p ] lG[. Let 0 # x = & yb[S6 J E ker $. It is sufficient to show 
that x is nilpotent, and this we accomplish by induction on 
~(~)=rnax~~~~l:~~#O~. If n(x)==& then x=r,[S,], so that 
x2= rf /Cl [S,] =0 since p / ICI. Assume n(x) > 1. It is enough to show 
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that n(~*) <n(x), since induction then implies x2 (hence x also) is 
nilpotent. Since XE ker $, we have the equations: 

c rh V,, = 0 all a E P. (1) 

Therefore, 

x2 = c rbyc vbcd[sdl 
hJ,d 

=c rc (F rb vbc,) [SC1 + c rbrc VbcdCSdl 
‘ b,r 

d-z‘ 

thus 

(2) 

Fix g E P with rg # 0 and n(x) = IN,/. It is sufficient to show that td # 0 
implies IHdI < IHJ. By (2), if t,#O, then there exists c > d with rr ~0. 
Then IHA -c lH,I d IH,l. I 

2.3. COROLLARY. pp is semisimple if and only if P )I ICI. In fact, if 
p!JGI, then B,2:Zp + ... i Z,, /PI-times. 

3. THE DIMENSION OF THE RADICAL 

Fix any a, b E P, and assume that a < 6. Define T = {g E G: Hz E Hb}. If 
(T E T, then H,oN,(H,) E T, so that T is a union of H, - NG(Hb) double 
cosets. Fix a double coset decomposition T= uf=, H,z,N,(H,) (possibly 
k = 0), and write G = T w UT=, H,aiHb, where H: @ H, for 16 i < s. Let 
t= Vb=(NG(Hb):Hb), and Write N,(H,)=p,H,k.J ... up,H,. 

3.1. LEMMA. If H,sipjHb = H@z~P~H~, then j= k. 

Proof: Write ripj=h,ripkhz, for some h, EH,, h2E H,. Then 
pk’pj=p;‘z;‘zipj=p~l~,~lh,~ipkhz~Hb, since r; ‘h, 5i E Hb, and 
pk E NG(Hb). Thus pjHb = PkHb, so that j= k. 1 

3.2. PROPOSITION. For any a, b E P, V, I Vho 
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ProofI If a & 6, then Vbrr = 0 and the result is clear. Assume a < b. Then 
by 3.1, we have (with the above notation) the disjoint double coset decom- 
position: 

Therefore, 

S, x Sb = G/H, x G/H, 

l.Ui,k,lJjll G/H, w 6 G/H, where ai < a, all i 
i=l 

= (kt). s, w (J s,. 
i=l 

We conclude that V,, = kt = kV,, so Vb 1 V,,. m 

For the remainder of this paper, “dimension” will mean dimension as a 
i&-space. 

3.3. PROPOSITION. dim(J,)= ({a:~ 1 ?‘,}I. 

ProoJ: If ~1 ICI the result is clear, so assume that p 1 ICI. Extend the 
partial ordering < on P to a total ordering so that H, 5 Hb implies a < b 
(but not necessarily the converse). Set n = IPI, and define a map 
B,+ZF)=Z,x . . . x Z, (n-times) by sending x = Cb rb[S,] to the vector 
X = (..., rb ,... ), ordered by d. Then x + X defines a &,-space isomorphism. 
Let M be the matrix ( Vba), considered as a linear transformation by right 
multiplication on Z, cn). Note that x = Cb r,[S,] E Jp iff x E ker $ iff 
&,rbVbu=O all ucP iff Z*M=O iff ZEkerM. Hence the map x+X 
restricts to a Z,-space isomorphism Jp + ker M. In particular, we conclude 
that dim(J,) + rank(M) = IPI. Since M is lower triangular, and since a zero 
diagonal entry occurs if and only if the entire row is zero (by 3.2), it follows 
that rank(M) = ) {a: p 1 Vn} 1, giving our result. 1 

4. IDEMPoTENTS IN B, 

In this section we use the map + to construct the primitive idempotents 
of B,. Fix a prime PE Z, then define P* = P*(G) = {u:p 1 Va}. Let 
n(p)= IP*l. By 3.3, Bp/Jp z im(ll/) is a semisimple subalgebra of Z7,, ,, Z, 
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of dimension n(p). By Wedderburn’s theorem, im($) is isomorphic with an 
algebra product of field extensions of Z,. By noting that no element in 
im($) has multiplicative order larger than p - 1, it follows that there is an 
algebra isomorphism CJ: im($) + nllp[ 22,. Let 6iE nip,) Z, be the 
primitive idempotent corresponding to projection onto the ith coordinate. 
For each i, choose X,E B, with all/(xi) = 6,. Then oll/(xf -xi) = 0, so that 
X- X~E ker Q!J =J,, that is, .x~ is idempotent modulo J,. By a standard 
lifting theorem [7, p. 971, there are idempotents e; E B, such that ei = xi 
(mod J,), i = l,..., n(p). We now establish some properties of the idem- 
potents {ej: i= l,..., n(p)). 

4.1. LEMMA. The idempotents {ej: i = l,..., n(p)) are distinct, pairwise 
orthogonal, and sum to 1. Moreover, each e, is primitive. 

Proof: If ei = ei then 6, = $(e,) = $(e,) = di, so i =j. For orthogonality, 
if i # j then o$(e,e,.) = 6;Si= 0, hence e,e,E ker $ = J,. Since e,e, is idem- 
potent, and J, is nilpotent, e,e,= 0. To see that Ci ei = 1, note that 
a$(Ci ej) = x:i Si = 1 = (T$( 1 ), so that 1 -xi e,E Jp. As above, this implies 
1 -Cie,=O. 

To see that each ei is primitive, let f E BP be idempotent with fei # 0. We 
must show fei= ei. Write m&f)= cjes Sj, for some SC (l,..., n(p)}. If 
i & S then 0 = q6( f) 6, = cq& fei) implies fei E J,, so that fei = 0 contrary to 
assumption. Hence iE S. Since f = -CjGs ej (mod J,), we have fei E ei 
(mod J,). As in the preceding paragraph, this impliesfej=ei. 1 

To aid in the statement of the next lemma, we (temporarily~ write 
ej = C, cia[S,], some ciu E h,, i = l,..., n(p). 

4.2. LEMMA. (a) For any i, $a~ P is maximal with cio # 0, then aE P* 
and ciu= V;‘. 

(b) Suppose i #j, and choose a, b maximal with c,, cjb # 0, respec- 
tively. Then a # b. 

(c) Each idempotent ei contains a unique maximal a E P* with cia # 0. 
If i # j, then these maximal elements are distinct. 

Proof: A simple computation using e! = ei and maximality of a yields 
e,r tin V,[S,] (mod Obfa ZJS,]). Thus cja = ci V, #0, so aE P* and 
ciu = V; l, proving (a). 

(b) If a=b, then O=eje,=cC,ci,[S,]2 (mod @,,,Z,[SJ)= 
ciucja VaCSal (mod @hfo ZJS,]). This implies ciuciu V, = 0, contrary to 
(a). 
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(c) Let ni be the number of maximal elements occuring in ei. Then 
by (b), IP*( aCin,>Ci 1 = JP*J, forcing ni= 1, all i. The second statement 
restates part (b). 1 

For each a E P* let err = z:b &,,[s,] be the primitive idempotent of B, 
with A,, = V; ’ and A,, = 0 if b & a. By 4.2 the idempotents {e,: a E P* } are 
just the idempotents {e,: i = l,..., n(p)} relabeled. Relabel the xfs and 8;s 
accordingly, so that a$(~,) = 6, and e,= x, (mod J,). For be P*, let 
rch: JJIrreP. Z, + Z, be projection onto the b-th coordinate. 

4.3. THEOREM. Let G be a finite group, and pi Z be a prime. Then 
B,(G) = I-I,, P- L,, where ,for bE P*, L, = B,(G) eb is 9 local ring with 
residue field Z,. 

Proof For each b E P*, define rb: B,eb + Z, by rb = nba$. We claim 
that J(B,e,) = ker rb. To see this suppose first that xeb E J(B,eb). Then 
xeb E B, is nilpotent, so that xeb E J(B,) = ker 1,9 G ker rb. Conversely, let 
xeb E ker TV. Note that a$(xeb) = a$(xebeb) = b$(xeb) 6,. Since 
7cb: (&,P* ‘~1 6b + Z, is an isomorphism, it follows that o$(xeb) = 0, that 
is, xeb E ker II/ = J( Bp). Then xeb E J( BP) eb = J( B,e,), finishing the claim. 
By the first homomorphism theorem we conclude B,eb/J(B,eb)2:E,, so 
B,e, is a local ring with residue field Z,. The remainder of the theorem is 
clear, since by 4.1, B, = B,(C, e,) N n, (B,e,). 1 

4.4. COROLLARY. G is a p-group if and only if B,(G) is a local ring. 

Proof. * If G is a p-group and Hc G, then H c NG(H). Thus, 
1 P* ( = 1, and the result follows from 4.3. 

= Let H be p-Sylow in G. Then p 1 (NJ H): H), so H represents a class 
in P*. However, if B,(G) is local, then by 4.3, (P*l = 1. Thus H and G are 
conjugate, that is, H = G. 1 

5. DIMENSION OF THE LOCAL DIRECT FACTORS 

Fixed throughout this section is a prime p E Z. For any a E P* and b E P, 
$b(en) is an idempotent in Z,, hence $b(ea) E (0, l}. We define the “sup- 
port of a modulo p” to be supp(a)= {bc P: $b(ea)= l}. Thus, 
lsupp(a)l = 1 iff $(e,) is a primitive idempotent of nbEP Z,. Our first objec- 
tive is to establish the identity: CQE P* (supp(a)J = JPI. 

5.1. LEMMA. (a) Ifa#b, then supp(a)nsupp(b)=(ZI. 
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(b) For any be P, there exists aE P* (unique bJ> part (a)) such that 
b E supp(a). 

(c) For any aE P*, supp(a)n P* = {a). 

Proof: (a) Suppose de supp(a) n supp(b), so that $Je,) = tid(eh) = 1. 
Then 1 = @Je,) t/Jeb) = +Je,e,) = tid(0) = 0, a contradiction. 

(b) If b d supp(a) for all a~ P*, then 1 = $Jl) = +JCo e,) = 
C, $Jeo) = 0, contradiction. 

(cl Since Il/,(e,) = tiuEbGaLCSbl) = CbGuLVbu = Lv, = 1, 
a E supp(u). If also b E supp(u) n P*, then b E supp(a) n supp(b) = 0. 1 

5.2. COROLLARY. CUEpt Isupp(a)l = IPI. 

ProoJ By 5.1, P= uatP* supp(u). 1 

5.3. LEMMA. Zf aE P* then the set {[S,] e,: bEsupp(u)} is a linearly 
independent subset of Bpe,. 

Proof: For brevity denote S = supp(u). If b E S, then tib(eo) = 1 implies 
CC A,,. I’,, = 1. Thus Cs,le,=Cr,djl~~V~bdCSdl~CSbl (modOccb 
Z,[S,.] ). Suppose there is a dependence relation CbE s rb[S,] e, = 0, for 
some rb E Z,, and fix g E S maximal with rg # 0. Thus rb # 0 implies g & b if 
b#g, so that [S,]$@r~bEp[S,]. Let S’= {be% b#g, r,#O}, and let I 
be the ideal: I= (CbES. Cr~6b Z,[S,.]) + (CdCg Z,[S,]). By the com- 
putation above, 0 =C bcS r,[S,] e, z r,[S,] & 0 (mod I), a contradic- 
tion. 1 

5.4. THEOREM. Let a E P*. Then dim(B,e,) = (supp(u Moreouer, 
{[S,] e,: b ~supp(u)} is a Z,-basis of B,e,, and {[S,] e,: bE supp(a), 
b#a} is a Z,-basis of J(B,e,). In particular, J,= euEpt 
0 bESUPP(U),b+u ~,[&I ea. 

Proof By 5.2 and 5.3 we have dim(B,) = C,, ,,* dim(B,e,) 2 
c oeP* lsupp(a)l = IPI = dim(B,,), and equality must hold thoughout. Thus, 
dim(B,e,) = lsupp(u)l, and the second statement follows from 5.3. Next, 
note that if b E supp(u) and b #a, then by 5.1(c), b$ P*. Thus by 3.2, 
[S,] E ker rl/ = Jp, so that [s,]e,~J(B,e,). Since Bpe, local, a dimension 
count now implies the third result. 1 

Because of 5.4, it would be helpful to have a formula for the “modular” 
idempotents of B,. The techniques used by Gluck [4] fail to work in our 
situation; however, there is another approach which gives a formula for 
these idemptotents modulo the radical J,. It is convenient to extend the 
ordering d on P to a total ordering, so that H, 5 H, implies a ,< b, but not 
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necessarily conversely. We introduce some auxiliary matrices. Define, 
M= (VabL,bePp Mp= (VabL,beP8y and Mp* = (VubLEPa,bEP. We consider 
M,, M,* to have entries in Z,, so that their arithmetic is modulo p. In par- 
ticular, MP is nonsingular since it is lower triangular with nonzero diagonal 
entries. Define N, to be the matrix product: NP= M;‘Mp* = 
(WabLEP*.bEP. 

5.5. PROPOSITION. (a) M;’ = (Aub)a,bEPI. 
(b) For any aE P*, $(e,)= (..., W,, ,... ). Thus the ath row of Np 

corresponds to the image under I/I of err. 

(c) Supp(a) = {b: W,, = l}. In particular, dim(B,e,) = CbsP W,,. 

Proqf Let c E P*. Then by 5.1 (c), 6,, = tiC(e,) = CbE P Jab Vbr. However, 
if b 4 P*, then Vb = 0, whence V,, = 0, by 3.2. Thus the sum is over P*, so 
that Che P* lab I’,, = a,,. Statement (a) follows. 

(b) It suffices to show that $Jeo)= W,,. By part (a) we 
have: tiJeJ= ICI~(CL.EPIZacCScl)=CCEP~(lC Vcb=CcEp* LJ”cb= Waby 
since V,, = 0 if c $ P*. 

(c) Immediate from part (b). 1 

Thus, modulo Jp, we can find the idempotents of B, by inverting the 
matrix MP. The following example illustrates the techniques involved. 

6. EXAMPLE:G= A, 

The purpose of this section is to compute B,(A,). The conjugacy classes 
of subgroups of A, are r = ( { 1 }), a,=(Z,)p=2, 3, 5, d,=(D,)p=2, 3, 5, 
b = (Ad), and o = (A5). The lattice of P(A,) is given by the diagram: 
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We extend the ordering < to a total ordering by setting I < u2 < 
a3 < a5 < cl, < d, < d, < h < o. It is a simple but tedious task to compute the 
double coset decompositions for pairs of subgroups of A,, and then to 
compute the constants V,, for all a, c E P(A,). This information is given by 
the matrix 

M= 

-60 
30 2 
20 0 2 0 
12 0 0 2 
153003 
1021001 
6201001 
51201001 
111111111 

We now consider the prime p = 2. Then P* = {d,, d3, d,, 6, co}, 

and M,l= 

Therefore, 

:1 0 
001 
1001 
01111 

11001 
001001 0 
0001001 . 
00000001 
000000001 i 

From 5.5(c) we have supp(d,) = {I, u2, d,}, supp(d,)= {a,, d3}, 
supp(d,) = {a,, d,}, supp(b) = {b}, and supp (w) = {w}. Also, from 
5.5(a), the primitive idempotents of &(A,) (modJ,(A,)) are 
edp = CSdpl P = 2,3,5, eb = csbl + [sd2ly and ew z [&I + csbl + 

CS,l + CS,l. 
From 5.5(c), the dimensions of the local direct factors are 3, 2, 2, 1, 1, 

respectively. Moreover, B,(A,) . ed2 has 2-nilpotent radical. This follows 
from direct computation, using the fact [6, Lemma 31 that 
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J(B2(A5). e,,) = Z,[S,] 0 Z,[S,,] (since O2 is 2-Sylow in A,). Algebras 
over finite fields of dimension 2 or 3 have been completely classified by 
Raghavendran [8, Theorems 10, 111. In particular, a local ring of dimen- 
sion 2 over Z, is isomorphic with the ring of matrices 
R,(2) = { (;f t): a, b E Z,}, while a local ring of dimension 3 with 2-nilpotent 
radical is isomorphic with the ring of matrices 

From this discussion it follows that: B2(A5)2:ZZ 4 Z, i R,(2) i 
R,(2) 4 R,(3). In a similar fashion, the rings B,(A,) and B,(A,) can be 
computed. They are 

B,(A5)=Z, i z3 i z, i z, i H, i R,(2) i R,(2), and 

B&4,)-Z, i z, i z, i z, i E, i z, i z, i R,(2). 

7. THE STRUCTURE OF THE SUPPORT 

This section is devoted to the problem of giving a non-combinatorial 
description of supp(a), for any a E P *. At the heart of this work, and what 
follows in Section 8, is the following lemma. 

7.1. LEMMA. Suppose c, dE P are such that Hd is G-conjugate to a nor- 
mal subgroup of H, (notation: H, -3, H,) of p-power index. Then for all 
a E P, V,, E I/,, (mod p). 

ProoJ We may assume Hd E H,. Take H, - H, and H, - H, double 
coset decompositions: 

vm 
G= u H,.ziH, w fi H,.cqH, 

i=l ;= 1 

and 

G= D H,oiH, II) fi H,/?,H,, 
i= I i=l 

where for all i, HF E H,, H: G H,, H: G H,, and H2 & H,. Denote 
Si = Hd bi H, and let S = { Si: 1 < i < V,,}. Since Hd is normal in H,, there 
is a well-defined H,. action on S given by aS, = S, if and only if obi E Sj, all 



68 ELIOTJACOBSON 

0 E H,. Evidently, H,c Stab,(Si) and Stab,<(Si) = H,. n “H,. Thus by 
hypothesis, IOrb,<( = (H, : Stab,<(S,)) is p-power for all i, with 
IOrb,<( = 1 if and only if HF E H,. 

Now observe that l’,(. = 1 {crj: H; g H,} I. To see this, define a map from 
{a,:H:cH,} to (7,: 1 <j,<V’,,) by bi+zi if and only if oi~H,zjH,. 
Note that H,. riHrr= T~H, for 1 ,< i< If,,., and if HF< H,, then 
HJo, H, = aiH, = T,, H, for some i, 1 <j 6 V,,.. Thus oi -+ zj defines a bijec- 
tion. Since S is a disjoint union of H,. orbits, Vrrd = (SI E CT, H,, 1 = 
I{oi: H;sH,}) = VU< (modp). 1 

7.2. COROLLARY. (Sylow) Zf p I (G), then the number of p-Sylow sub- 
groups of G is congruent to one module p. 

Proof Let c denote the class of the p-Sylow subgroups. Take d= z and 
u=c in 7.1. 1 

For any subgroup H < G we let W(H) denote the (unique) smallest nor- 
mal subgroup of H of p-power index. 

7.3. THEOREM. Let a E P* and d E P. The following are equivalent. 

(4 dg sw+). 
(b) There is a normal chain Hd = H,, 4 H, ~3 . . . Q H, - H, with each 

quotient a p-group. 

(c) WHa)SH,5H,. 

Proof (b) =z- (a) Induce on n. The case n = 0 being clear, assume that 
n 2 1. Choose c E P with H, - HC. By induction, c E supp(a). Applying 7.1 
we then have $Jeu) = Ch A,, V,, = Cb A,, VbC. = $,(e,) = 1. Therefore, 
d E supp( a). 

(a) * (b) We define the chain inductively. Let H, = Hd, and assume we 
have constructed H,a H, 4 ... 4 Hk with each quotient a p-group. 
Choose c E P with Hk- H,.. Note that if CE P* then by the implication 
(b) * (a) we have dE supp(c) n supp(a), thus c = a and the chain is com- 
plete. If c $ P* then p ( (N,(H,.): H,.), so let H Q G be such that H/H, is p- 
Sylow in N,(H,.)/H,.. Then H, Z H, so there is a subgroup Hk + , -H with 
ff,c~Hk+ I and the quotient a p-group. 

(b)o(c) is standard, and we omit the proof. 1 

This Theorem has two interesting corollaries. 

7.4. COROLLARY. If p exactly divides ICI, then the local direct factors of 
B, have B,-dimension either one or two. 
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Proof By 4.3 and 5.4 it suffices to show that for any UE P*, 
supp( = 1 or 2. If p exactly divides (H,(, then there can be at most one 

normal subgroup of H, of index p, while there can be no such subgroups if 
p does not divide IH,I. Apply 7.3. 1 

In fact, this Corollary is precise in the sense that if p2 1 (GI, then the local 
direct factor corresponding to a p-Sylow has dimension at least 3 (see [6]). 

Using the characterization of dimension 2 algebras over H, as in Sec- 
tion 6 we find that if (G( is square free, then for any prime p, 
B,(G) 1: Z$) i R,(2)‘“‘, for some nonnegative integers r, s, depending on p, 
with s > 0 if and only if p 1 JG(. Since R,(2) has a unique proper ideal, it is 
trivial to check that R,(2) is self-injective. Since it is also Artinian, R,(2) is 
quasi-Frobenius. Moreover, the property of being quasi-Frobenius is 
invariant under finite direct products and scalar extensions. Hence we 
obtain in a more concrete fashion Corollary 2 of [6]. 

7.5. COROLLARY. If G has square free order then for any field F, 
F Q E B(G) is a quasi-Frobenius F-algebra. 

8. APPLICATIONS TO MODULAR REPRESENTATIONS 

We now discuss Z,-representations of the group G, where we fix a prime 
p dividing JGJ. For any G-set S, the permutation representation of S is 
integral, so by reducing modulo p we obtain a &-representation whose 
character will be dnoted by rs. In particular if S = S, we denote by 4, the 
permutation character 15, reduced modulo p. This correspondence yields a 
ring homomorphism B(G) + X(G, p), where X(G, p) is the ring of Z,- 
characters. Since pB(G) is contained in the kernel of this map, there is a 
ring homomorphism 8: B,,(G) --P X(G, p), where 8 satisfies 0( [S]) = ts for 
any G-set S. For each c E G, we let a, E P denote the class of the cyclic sub- 
group (c ) of G. 

8.1. PROPOSITION. (a) Let b E P and a E G. Then &(a) = Vba, (con- 
sidered in 27,). In particular, if b # P*, then [S,] E ker 8. 

(b) Let acP* and denote %O={o~G:OP(H,)~(o)~H,}. Then 
@e,) is the indicator function of the set aa. In particular, e, 4 ker 8 if and 
only if H, is p-hyperelementary. 

Proof. (a) Let m= (l/IHJ) I{ZE G: azH,= tHb}), then by definition 
[J(T) equals m reduced modulo p. But ozH, = zH, if and only if 
(a>‘GHb, so that m = VbnC, which is the first statement. The second 
statement now follows from 3.2. 
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(b) Let cry G, then by 5.5 we have H(~,)(a)=tI(x, j.,,,[S,])(a)= 
Ch L Vbun = Wu,n. Apply 5.5(c) and 7.3 to get the first statement. Finally, 
e, $ ker 6’ if and only if %P‘, is nonempty if and only if OP(HN) is cyclic if and 
only if H, is p-hyperelementary. 1 

It will be helpful to have another description of the sets 02~. Towards this 
we define, for any p-regular element x of G, the set 
yy= {LEG: (o’)-(x)}, h w ere g’ denotes the p-prime part of cr (see [ 51). 

8.2. PROPOSITION. (a) Let a E P* he such that e, $ ker 8, and let x E G 
be any generator of the cyclic p‘-group OP(HU). Then 4?U = yV. 

(b) Conversely, for any p-regular x E G, there exists a unique a E P* 
such that (x) N Op( H,), and for this a, “@!U = YY. 

Proof. (a) Choose b E P with H,- OP(H,). If 0 E aa, then HbS (a), 
hence (0’) -H,- (x) implies (T E Sp,. Conversely, if c E Sp, then 
Hbm (a’) < (a). Choose CFP* with a,E supp(c). Then by 7.3, 
b E supp(c) n supp(a), whence c = a by 5.1. Thus a, < a, so (a) 5 H,. By 
definition, a E a”. 

(b) Say (x)-H,, some bE P, and choose aE P* with b E supp(a). 
Obviously, H,, - Op( H,), and by part (a), &a = yx. Uniqueness follows 
directly from 5.1. 1 

This proposition has a a consequence the following modular version of 
the main theorem of Gluck [S]. 

8.3. THEOREM. Let p be a prime dividing (Cl. Then for any p-regular 
x E G, the indicator function I,Y, is in the image of 0. In particular we may 
writeZ,,,=C,u,l$, unE;Zp, where the sum ranges over p-hyperelementary 
subgroups H satisfying p 1 (No(H): H) and Hs H,, where a E P* is such that 
@o=Yr. 

Proof Let aE P* be as in 8.2(b). Since @a = Yx is nonempty, H, and 
all subconjugate subgroups are p-hyperelementary. Then, ZYx = I*, = 
8(e,)=e(C,..n,,CSbl)=Ch~o,bEP* &,tb. A change of notation gives the 
result. 1 

We now describe the image of 13. Call a character x: G -+ E, p-constant if 
whenever a, ZE G with (a’)- (r’), then x(a) = x(r). The essence of the 
Artin induction theorem is that the corresponding property holds for 
rational characters Cl, Lemma 39.43, however, it is easy to discover h,- 
characters that are not p-constant. Nevertheless, it is clear that sums and 
products of p-constant characters are again p-constant, and we obtain 
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8.4. THOREM. The image of 8 is the subring of X(G, p) consisting of 
the p-constant characters. 

Proof: E By 5.4 and 8.1(a), it suffices to show that e( [S,] e,) is p- 
constant for any a E P*. Choose x E G as in 8.2, and let g, r E G be such that 
(o’)~(r’). If a$~?? then plainly ~$9?~, hence e([s,]e,)(a)= 
tI([,S,] e,)(z)=0 in this case. Assume 0, z ~9,. Then by 7.1, 
@[Sal e,)(a) = t,(a) = v,,, = vaao. = vaaz, = v,, = Lb) = e(CS,l e,)(r). 

2 If x is a p-constant character of G, then by definition x is constant 
on each of the sets Y: for p-regular x E G, hence on each of the sets aO, 
aE P*. Say x(%~) =n,~ Z,, (n, :=0 if eU is empty). Then x=x. 1 = 
~~~~~~~~~ eJ = CutP* x% = LPI n& = wh-- n,e,)Eimw of 
0. I 

Finally, as a corollary of this result and 8.3, we obtain the following 
modular version of the Artin induction theorem. 

8.5. THEOREM. Any p-constant character x: G --* Z, is a 7,-linear com- 
bination x = CH u,lG,, where H ranges over those p-hyperelementary sub- 
groups of G such that p 1 (N,(H): H). 
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