The Burnside Ring Modulo a Prime

ELIOT JACOBSON

Department of Mathematics, Ohio University, Athens, Ohio 45701

Communicated by Nathan Jacobson

Received August 15, 1983

1. Introduction

Let G be a finite group, and let B(G) denote the Burnside ring of G, that is, the Grothendieck ring constructed on the category of finite G-sets under disjoint union and cartesian product (see [2] for a more complete description). As Solomon [9] pointed out, the structure of B(G) becomes trivial upon scalar extension to \mathbb{Q} ; indeed, $\mathbb{Q} \otimes_{\mathbb{Z}} B(G)$ is isomorphic with a finite product of copies of \mathbb{Q} . It is natural to ask for a similar result when \mathbb{Q} is replaced by the prime field \mathbb{Z}_p of integers modulo p. The purpose of the present paper is to determine the structure of the ring $B_p(G) = \mathbb{Z}_p \otimes_{\mathbb{Z}} B(G)$. As we shall see, if $p \mid |G|$, then the structure of $B_p(G)$ is quite complex.

We begin with some notational conventions. Let P = P(G) denote the set of all conjugacy classes of subgroups of G. For each $b \in P$, pick a representative H_b of b, and let S_b denote the transitive G-set of cosets modulo H_b . Let ι denote the class of the trivial subgroup, so that $S_\iota = G/\{1\}$. The set P has a natural partial ordering, where we write $a \le b$ whenever H_a is subconjugate to H_b (denoted $H_a \le H_b$). Then ι is the unique minimal element of P. For a, b, $c \in P$, let V_{abc} be the number of orbits in $S_a \times S_b$, under the diagonal action of G, which are isomorphic with S_c as G-sets. Equivalently, write $G = \bigcup_{i=1}^{r} H_a \sigma_i H_b$, then $V_{abc} = |\{i: H_a \cap \sigma^i H_b \sim H_c\}|$, where \sim denotes G-conjugacy. For brevity, denote $V_{abb} = V_{ab}$ and $V_{bbb} = V_b$. For a G-set S, we let [S] denote its image in B(G). The following proposition collects some well-known properties of B(G) (see [3]).

- 1.1. PROPOSITION. (a) Additively, B(G) is free on the set $\{[S_a]: a \in P\}$, that is, $\{S_a: a \in P\}$ is a complete set of representatives of isomorphism classes of transitive G-sets.
- (b) For any $a, b \in P$, $[S_a][S_b] = \sum_{c \in P} V_{abc}[S_c]$, that is, the V_{abc} are structure constants for B(G).

- (c) For any $a, b, c \in P$, $V_{abc} = 0$ unless both $c \le a$ and $c \le b$.
- (d) For any $a \in P$, $V_a = (N_G(H_a): H_a)$.

For the remainder of this paper, assume we have a fixed finite group G. For brevity, we denote $B_p = B_p(G)$, and B = B(G). Even though B does not embed faithfully in B_p , the natural isomorphism $B_p \simeq B/pB$ implies that we may consider $B_p = \bigoplus_{a \in P} \mathbb{Z}_p[S_a]$, where multiplication is given by 1.1(b) by reducing the V_{abc} modulo p.

2. The Radical of B_p

If S is a G-set, and $H \leq G$, then S^H denotes the set of H fixed points in S. For any $a \in P$, there is a ring homomorphism $\phi_a \colon B \to \mathbb{Z}$ given by $\phi_a([S]) = |S^{H_a}|$ (see [2]), in particular, $\phi_a([S_b]) = V_{ba}$. The product map $\phi = (\phi_a) \colon B \to \prod_{a \in P} \mathbb{Z}$ is injective. By reducing modulo p, there are induced ring homomorphisms $\psi_a \colon B_p \to \mathbb{Z}_p$ and $\psi = (\psi_a) \colon B_p \to \prod_{a \in P} \mathbb{Z}_p$, where $\psi_a([S_b]) = V_{ba} \in \mathbb{Z}_p$. However, ψ need not be injective.

2.1. LEMMA. ψ is injective if and only if $p \nmid |G|$. In this case, ψ is an isomorphism.

Proof. \Rightarrow If $p \mid |G|$, then $\psi_i([S_i]) = V_{ii} = |G| = 0$, and for any other $a \in P$, $\psi_a([S_i]) = V_{ia} = 0$ by 1.1(c), since $a \le i$. Thus, $[S_i] \in \ker \psi$.

 \Leftarrow Suppose $0 \neq x = \sum_b r_b [S_b] \in \ker \psi$, and choose $g \in P$ maximal with $r_g \neq 0$. For any other $c \in P$, $r_c \neq 0$ implies $g \leqslant c$, so that $V_{cg} = 0$. Then, $0 = \psi_g(x) = \sum_b r_b V_{bg} = r_g V_g$, so that $p \mid V_g$. It follows that $p \mid |G|$. By counting \mathbb{Z}_p -dimensions, ψ is injective if and only if it is an isomorphism.

We let $J_p = J(B_p)$ denote the Jacobson radical of B_p .

- 2.2. Proposition. $J_p = \ker \psi$.
- *Proof.* \subseteq Recall that J_p is the intersection of the annihilators of all simple B_p -modules. For any $a \in P$, \mathbb{Z}_p becomes a simple B_p -module via ψ_a . Thus, if $x \in J_p$, then $\psi_a(x) \cdot \mathbb{Z}_p = 0$, so that $\psi_a(x) = 0$, all $a \in P$. It follows that $x \in \ker \psi$.
- \supseteq If $p \nmid |G|$, then $\ker \psi = 0$ by 2.1, and the inclusion is clear. Thus we may assume $p \mid |G|$. Let $0 \neq x = \sum_b r_b [S_b] \in \ker \psi$. It is sufficient to show that x is nilpotent, and this we accomplish by induction on $n(x) = \max\{|H_b|: r_b \neq 0\}$. If n(x) = 1, then $x = r_i [S_i]$, so that $x^2 = r_i^2 |G| [S_i] = 0$ since $p \mid |G|$. Assume n(x) > 1. It is enough to show

that $n(x^2) < n(x)$, since induction then implies x^2 (hence x also) is nilpotent. Since $x \in \ker \psi$, we have the equations:

$$\sum_{b} r_b V_{ba} = 0 \qquad \text{all } a \in P.$$
 (1)

Therefore,

$$x^{2} = \sum_{b,c,d} r_{b} r_{c} V_{bcd}[S_{d}]$$

$$= \sum_{c} r_{c} \left(\sum_{b} r_{b} V_{bc} \right) [S_{c}] + \sum_{\substack{b,c \\ d < c}} r_{b} r_{c} V_{bcd}[S_{d}]$$

$$= \sum_{\substack{b,c \\ d < c}} r_{b} r_{c} V_{bcd}[S_{d}] \qquad \text{(by (1))};$$

thus

$$x^{2} = \sum_{d} \left(\sum_{c>d} r_{c} \left(\sum_{b} r_{b} V_{bcd} \right) \right) [S_{d}] = \sum_{d} t_{d} [S_{d}].$$
 (2)

Fix $g \in P$ with $r_g \neq 0$ and $n(x) = |H_g|$. It is sufficient to show that $t_d \neq 0$ implies $|H_d| < |H_g|$. By (2), if $t_d \neq 0$, then there exists c > d with $r_c \neq 0$. Then $|H_d| < |H_c| \leq |H_g|$.

2.3. COROLLARY. B_p is semisimple if and only if $P \nmid |G|$. In fact, if $p \nmid |G|$, then $B_p \simeq \mathbb{Z}_p \dotplus \cdots \dotplus \mathbb{Z}_p$, |P|-times.

3. THE DIMENSION OF THE RADICAL

Fix any $a, b \in P$, and assume that $a \le b$. Define $T = \{\sigma \in G: H_a^{\sigma} \subseteq H_b\}$. If $\sigma \in T$, then $H_a \sigma N_G(H_b) \subseteq T$, so that T is a union of $H_a - N_G(H_b)$ double cosets. Fix a double cosendousle decomposition $T = \bigcup_{i=1}^k H_a \tau_i N_G(H_b)$ (possibly k = 0), and write $G = T \cup \bigcup_{i=1}^s H_a \sigma_i H_b$, where $H_a^{\sigma_i} \not\subseteq H_b$ for $1 \le i \le s$. Let $t = V_b = (N_G(H_b): H_b)$, and write $N_G(H_b) = \rho_1 H_b \cup \cdots \cup \rho_t H_b$.

3.1. LEMMA. If $H_a \tau_i \rho_i H_b = H_a \tau_i \rho_k H_b$, then j = k.

Proof. Write $\tau_i \rho_j = h_1 \tau_i \rho_k h_2$, for some $h_1 \in H_a$, $h_2 \in H_b$. Then $\rho_k^{-1} \rho_j = \rho_k^{-1} \tau_i^{-1} \tau_i \rho_j = \rho_k^{-1} \tau_i^{-1} h_1 \tau_i \rho_k h_2 \in H_b$, since $\tau_i^{-1} h_1 \tau_i \in H_b$, and $\rho_k \in N_G(H_b)$. Thus $\rho_i H_b = \rho_k H_b$, so that j = k.

3.2. Proposition. For any $a, b \in P$, $V_b \mid V_{ba}$.

Proof. If $a \le b$, then $V_{ba} = 0$ and the result is clear. Assume $a \le b$. Then by 3.1, we have (with the above notation) the *disjoint* double coset decomposition:

$$G = \bigcup_{i=1}^{k} \bigcup_{j=1}^{l} H_a \tau_i \rho_j H_b \cup \bigcup_{i=1}^{s} H_a \sigma_i H_b.$$

Therefore,

$$S_{a} \times S_{b} = G/H_{a} \times G/H_{b}$$

$$\simeq \bigcup_{i=1}^{k} \bigcup_{j=1}^{t} G/H_{b} \cap H_{a}^{\epsilon_{i}\rho_{j}} \cup \bigcup_{i=1}^{s} G/H_{b} \cap H_{a}^{\sigma_{i}}$$

$$\simeq \bigcup_{i=1}^{k} \bigcup_{j=1}^{t} G/H_{a} \cup \bigcup_{i=1}^{s} G/H_{a_{i}} \quad \text{where} \quad a_{i} < a, \text{ all } i$$

$$= (kt) \cdot S_{a} \cup \bigcup_{i=1}^{s} S_{a_{i}}.$$

We conclude that $V_{ba} = kt = kV_b$, so $V_b \mid V_{ba}$.

For the remainder of this paper, "dimension" will mean dimension as a \mathbb{Z}_p -space.

3.3. Proposition.
$$\dim(J_p) = |\{a: p \mid V_a\}|.$$

Proof. If $p \nmid |G|$ the result is clear, so assume that $p \mid |G|$. Extend the partial ordering \leq on P to a total ordering so that $H_a \leq H_b$ implies $a \leq b$ (but not necessarily the converse). Set n = |P|, and define a map $B_p \to \mathbb{Z}_p^{(n)} = \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ (n-times) by sending $x = \sum_b r_b [S_b]$ to the vector $\bar{x} = (..., r_b, ...)$, ordered by \leq . Then $x \to \bar{x}$ defines a \mathbb{Z}_p -space isomorphism. Let M be the matrix (V_{ba}) , considered as a linear transformation by right multiplication on $\mathbb{Z}_p^{(n)}$. Note that $x = \sum_b r_b [S_b] \in J_p$ iff $x \in \ker \psi$ iff $\sum_b r_b V_{ba} = 0$ all $a \in P$ iff $\bar{x} \cdot M = 0$ iff $\bar{x} \in \ker M$. Hence the map $x \to \bar{x}$ restricts to a \mathbb{Z}_p -space isomorphism $J_p \to \ker M$. In particular, we conclude that $\dim(J_p) + \operatorname{rank}(M) = |P|$. Since M is lower triangular, and since a zero diagonal entry occurs if and only if the entire row is zero (by 3.2), it follows that $\operatorname{rank}(M) = |\{a: p \nmid V_a\}|$, giving our result. ▮

4. IDEMPOTENTS IN B_n

In this section we use the map ψ to construct the primitive idempotents of B_p . Fix a prime $p \in \mathbb{Z}$, then define $P^* = P^*(G) = \{a: p \mid V_a\}$. Let $n(p) = |P^*|$. By 3.3, $B_p/J_p \simeq \operatorname{im}(\psi)$ is a semisimple subalgebra of $\Pi_{a \in P} \mathbb{Z}_p$

of dimension n(p). By Wedderburn's theorem, $\operatorname{im}(\psi)$ is isomorphic with an algebra product of field extensions of \mathbb{Z}_p . By noting that no element in $\operatorname{im}(\psi)$ has multiplicative order larger than p-1, it follows that there is an algebra isomorphism $\sigma\colon \operatorname{im}(\psi)\to \prod_{i=1}^{n(p)}\mathbb{Z}_p$. Let $\delta_i\in\prod_{i=1}^{n(p)}\mathbb{Z}_p$ be the primitive idempotent corresponding to projection onto the ith coordinate. For each i, choose $x_i\in B_p$ with $\sigma\psi(x_i)=\delta_i$. Then $\sigma\psi(x_i^2-x_i)=0$, so that $x_i^2-x_i\in\ker\psi=J_p$, that is, x_i is idempotent modulo J_p . By a standard lifting theorem [7, p. 97], there are idempotents $e_i\in B_p$ such that $e_i\equiv x_i\pmod{J_p}$, i=1,...,n(p). We now establish some properties of the idempotents $\{e_i\colon i=1,...,n(p)\}$.

4.1. LEMMA. The idempotents $\{e_i: i=1,...,n(p)\}$ are distinct, pairwise orthogonal, and sum to 1. Moreover, each e_i is primitive.

Proof. If $e_i = e_j$ then $\delta_i = \psi(e_i) = \psi(e_j) = \delta_j$, so i = j. For orthogonality, if $i \neq j$ then $\sigma \psi(e_i e_j) = \delta_i \delta_j = 0$, hence $e_i e_j \in \ker \psi = J_p$. Since $e_i e_j$ is idempotent, and J_p is nilpotent, $e_i e_j = 0$. To see that $\sum_i e_i = 1$, note that $\sigma \psi(\sum_i e_i) = \sum_i \delta_i = 1 = \sigma \psi(1)$, so that $1 - \sum_i e_i \in J_p$. As above, this implies $1 - \sum_i e_i = 0$.

To see that each e_i is primitive, let $f \in B_p$ be idempotent with $fe_i \neq 0$. We must show $fe_i = e_i$. Write $\sigma \psi(f) = \sum_{j \in S} \delta_j$, for some $S \subseteq \{1, ..., n(p)\}$. If $i \notin S$ then $0 = \sigma \psi(f) \delta_i = \sigma \psi(fe_i)$ implies $fe_i \in J_p$, so that $fe_i = 0$ contrary to assumption. Hence $i \in S$. Since $f \equiv \sum_{j \in S} e_j \pmod{J_p}$, we have $fe_i \equiv e_i \pmod{J_p}$. As in the preceding paragraph, this implies $fe_i = e_i$.

To aid in the statement of the next lemma, we (temporarily) write $e_i = \sum_a c_{ia} [S_a]$, some $c_{ia} \in \mathbb{Z}_p$, i = 1,..., n(p).

- 4.2. LEMMA. (a) For any i, if $a \in P$ is maximal with $c_{ia} \neq 0$, then $a \in P^*$ and $c_{ia} = V_a^{-1}$.
- (b) Suppose $i \neq j$, and choose a, b maximal with $c_{ia}, c_{jb} \neq 0$, respectively. Then $a \neq b$.
- (c) Each idempotent e_i contains a unique maximal $a \in P^*$ with $c_{ia} \neq 0$. If $i \neq j$, then these maximal elements are distinct.
- *Proof.* A simple computation using $e_i^2 = e_i$ and maximality of a yields $e_i \equiv c_{ia}^2 V_a[S_a] \pmod{\bigoplus_{b \neq a} \mathbb{Z}_p[S_b]}$. Thus $c_{ia} = c_{ia}^2 V_a \neq 0$, so $a \in P^*$ and $c_{ia} = V_a^{-1}$, proving (a).
- (b) If a = b, then $0 = e_i e_j \equiv c_{ia} c_{ja} [S_a]^2$ (mod $\bigoplus_{b \neq a} \mathbb{Z}_p [S_b]$) $\equiv c_{ia} c_{ja} V_a [S_a]$ (mod $\bigoplus_{b \neq a} \mathbb{Z}_p [S_b]$). This implies $c_{ia} c_{ja} V_a = 0$, contrary to (a).

(c) Let n_i be the number of maximal elements occurring in e_i . Then by (b), $|P^*| \ge \sum_i n_i \ge \sum_i 1 = |P^*|$, forcing $n_i = 1$, all *i*. The second statement restates part (b).

For each $a \in P^*$ let $e_a = \sum_b \lambda_{ab} [S_b]$ be the primitive idempotent of B_p with $\lambda_{aa} = V_a^{-1}$ and $\lambda_{ab} = 0$ if $b \leqslant a$. By 4.2 the idempotents $\{e_a : a \in P^*\}$ are just the idempotents $\{e_i : i = 1, ..., n(p)\}$ relabeled. Relabel the x_i 's and δ_i 's accordingly, so that $\sigma \psi(x_a) = \delta_a$ and $e_a \equiv x_a \pmod{J_p}$. For $b \in P^*$, let $\pi_b : \prod_{a \in P^*} \mathbb{Z}_p \to \mathbb{Z}_p$ be projection onto the b-th coordinate.

4.3. THEOREM. Let G be a finite group, and $p \in \mathbb{Z}$ be a prime. Then $B_p(G) \simeq \prod_{a \in P^*} L_a$, where for $b \in P^*$, $L_b = B_p(G) e_b$ is a local ring with residue field \mathbb{Z}_p .

Proof. For each $b \in P^*$, define $\tau_b \colon B_p e_b \to \mathbb{Z}_p$ by $\tau_b = \pi_b \sigma \psi$. We claim that $J(B_p e_b) = \ker \tau_b$. To see this suppose first that $xe_b \in J(B_p e_b)$. Then $xe_b \in B_p$ is nilpotent, so that $xe_b \in J(B_p) = \ker \psi \subseteq \ker \tau_b$. Conversely, let $xe_b \in \ker \tau_b$. Note that $\sigma \psi(xe_b) = \sigma \psi(xe_b e_b) = \sigma \psi(xe_b) \delta_b$. Since $\pi_b \colon (\prod_{a \in P^*} \mathbb{Z}_p) \delta_b \to \mathbb{Z}_p$ is an isomorphism, it follows that $\sigma \psi(xe_b) = 0$, that is, $xe_b \in \ker \psi = J(B_p)$. Then $xe_b \in J(B_p) e_b = J(B_p e_b)$, finishing the claim. By the first homomorphism theorem we conclude $B_p e_b / J(B_p e_b) \simeq \mathbb{Z}_p$, so $B_p e_b$ is a local ring with residue field \mathbb{Z}_p . The remainder of the theorem is clear, since by 4.1, $B_p = B_p(\sum_a e_a) \simeq \prod_a (B_p e_a)$.

4.4. COROLLARY. G is a p-group if and only if $B_p(G)$ is a local ring.

Proof. \Rightarrow If G is a p-group and $H \subset G$, then $H \subset N_G(H)$. Thus, $|P^*| = 1$, and the result follows from 4.3.

 \Leftarrow Let H be p-Sylow in G. Then $p \nmid (N_G(H): H)$, so H represents a class in P^* . However, if $B_p(G)$ is local, then by 4.3, $|P^*| = 1$. Thus H and G are conjugate, that is, H = G.

5. DIMENSION OF THE LOCAL DIRECT FACTORS

Fixed throughout this section is a prime $p \in \mathbb{Z}$. For any $a \in P^*$ and $b \in P$, $\psi_b(e_a)$ is an idempotent in \mathbb{Z}_p , hence $\psi_b(e_a) \in \{0, 1\}$. We define the "support of a modulo p" to be $\operatorname{supp}(a) = \{b \in P : \psi_b(e_a) = 1\}$. Thus, $|\operatorname{supp}(a)| = 1$ iff $\psi(e_a)$ is a primitive idempotent of $\prod_{b \in P} \mathbb{Z}_p$. Our first objective is to establish the identity: $\sum_{a \in P^*} |\operatorname{supp}(a)| = |P|$.

5.1. LEMMA. (a) If $a \neq b$, then $supp(a) \cap supp(b) = \emptyset$.

- (b) For any $b \in P$, there exists $a \in P^*$ (unique by part (a)) such that $b \in \text{supp}(a)$.
 - (c) For any $a \in P^*$, supp $(a) \cap P^* = \{a\}$.
- *Proof.* (a) Suppose $d \in \text{supp}(a) \cap \text{supp}(b)$, so that $\psi_d(e_a) = \psi_d(e_b) = 1$. Then $1 = \psi_d(e_a) \psi_d(e_b) = \psi_d(e_ae_b) = \psi_d(0) = 0$, a contradiction.
- (b) If $b \notin \text{supp}(a)$ for all $a \in P^*$, then $1 = \psi_b(1) = \psi_b(\sum_a e_a) = \sum_a \psi_b(e_a) = 0$, contradiction.
- (c) Since $\psi_a(e_a) = \psi_a(\sum_{b \leq a} \lambda_{ab}[S_b]) = \sum_{b \leq a} \lambda_{ab} V_{ba} = \lambda_{aa} V_a = 1$, $a \in \text{supp}(a)$. If also $b \in \text{supp}(a) \cap P^*$, then $b \in \text{supp}(a) \cap \text{supp}(b) = \emptyset$.
 - 5.2. COROLLARY. $\sum_{a \in P^*} |\operatorname{supp}(a)| = |P|$.

Proof. By 5.1, $P = \bigcup_{a \in P^*} \operatorname{supp}(a)$.

5.3. LEMMA. If $a \in P^*$ then the set $\{[S_b] e_a : b \in \text{supp}(a)\}$ is a linearly independent subset of $B_n e_a$.

Proof. For brevity denote $S = \operatorname{supp}(a)$. If $b \in S$, then $\psi_b(e_a) = 1$ implies $\sum_c \lambda_{ac} V_{cb} = 1$. Thus $[S_b] e_a = \sum_{c,d} \lambda_{ac} V_{cbd} [S_d] \equiv [S_b]$ (mod $\bigoplus_{c < b} \mathbb{Z}_p [S_c]$). Suppose there is a dependence relation $\sum_{b \in S} r_b [S_b] e_a = 0$, for some $r_b \in \mathbb{Z}_p$, and fix $g \in S$ maximal with $r_g \neq 0$. Thus $r_b \neq 0$ implies $g \not \in b$ if $b \neq g$, so that $[S_g] \not \in \bigoplus_{c \in b} \mathbb{Z}_p [S_c]$. Let $S' = \{b \in S: b \neq g, r_b \neq 0\}$, and let I be the ideal: $I = (\sum_{b \in S'} \sum_{c \in b} \mathbb{Z}_p [S_c]) + (\sum_{d < g} \mathbb{Z}_p [S_d])$. By the computation above, $0 = \sum_{b \in S} r_b [S_b] e_a \equiv r_g [S_g] \not \equiv 0$ (mod I), a contradiction. ■

5.4. THEOREM. Let $a \in P^*$. Then $\dim(B_p e_a) = |\operatorname{supp}(a)|$. Moreover, $\{ [S_b] e_a \colon b \in \operatorname{supp}(a) \}$ is a \mathbb{Z}_p -basis of $B_p e_a$, and $\{ [S_b] e_a \colon b \in \operatorname{supp}(a), b \neq a \}$ is a \mathbb{Z}_p -basis of $J(B_p e_a)$. In particular, $J_p = \bigoplus_{a \in P^*} \bigoplus_{b \in \operatorname{supp}(a), b \neq a} \mathbb{Z}_p[S_b] e_a$.

Proof. By 5.2 and 5.3 we have $\dim(B_p) = \sum_{a \in P^*} \dim(B_p e_a) \ge \sum_{a \in P^*} |\operatorname{supp}(a)| = |P| = \dim(B_p)$, and equality must hold thoughout. Thus, $\dim(B_p e_a) = |\operatorname{supp}(a)|$, and the second statement follows from 5.3. Next, note that if $b \in \operatorname{supp}(a)$ and $b \ne a$, then by 5.1(c), $b \notin P^*$. Thus by 3.2, $[S_b] \in \ker \psi = J_p$, so that $[S_b] e_a \in J(B_p e_a)$. Since $B_p e_a$ local, a dimension count now implies the third result. ■

Because of 5.4, it would be helpful to have a formula for the "modular" idempotents of B_p . The techniques used by Gluck [4] fail to work in our situation; however, there is another approach which gives a formula for these idemptotents modulo the radical J_p . It is convenient to extend the ordering \leq on P to a total ordering, so that $H_a \lesssim H_b$ implies $a \leq b$, but not

necessarily conversely. We introduce some auxiliary matrices. Define $M = (V_{ab})_{a,b \in P}$, $M_p = (V_{ab})_{a,b \in P^*}$, and $M_p^* = (V_{ab})_{a \in P^*,b \in P}$. We consider M_p , M_p^* to have entries in \mathbb{Z}_p , so that their arithmetic is modulo p. In particular, M_p is nonsingular since it is lower triangular with nonzero diagonal entries. Define N_p to be the matrix product: $N_p = M_p^{-1} M_p^* = (W_{ab})_{a \in P^*,b \in P}$.

- 5.5. Proposition. (a) $M_p^{-1} = (\lambda_{ab})_{a,b \in P^*}$.
- (b) For any $a \in P^*$, $\psi(e_a) = (..., W_{ab},...)$. Thus the ath row of N_p corresponds to the image under ψ of e_a .
 - (c) Supp $(a) = \{b: W_{ab} = 1\}$. In particular, dim $(B_p e_a) = \sum_{b \in P} W_{ab}$.

Proof. Let $c \in P^*$. Then by 5.1(c), $\delta_{ac} = \psi_c(e_a) = \sum_{b \in P} \lambda_{ab} V_{bc}$. However, if $b \notin P^*$, then $V_b = 0$, whence $V_{bc} = 0$, by 3.2. Thus the sum is over P^* , so that $\sum_{b \in P^*} \lambda_{ab} V_{bc} = \delta_{ac}$. Statement (a) follows.

- (b) It suffices to show that $\psi_b(e_a) = W_{ab}$. By part (a) we have: $\psi_b(e_a) = \psi_b(\sum_{c \in P} \lambda_{ac}[S_c]) = \sum_{c \in P} \lambda_{ac} V_{cb} = \sum_{c \in P^*} \lambda_{ac} V_{cb} = W_{ab}$, since $V_{cb} = 0$ if $c \notin P^*$.
 - (c) Immediate from part (b).

Thus, modulo J_p , we can find the idempotents of B_p by inverting the matrix M_p . The following example illustrates the techniques involved.

6. Example:
$$G = A_5$$

The purpose of this section is to compute $B_2(A_5)$. The conjugacy classes of subgroups of A_5 are $i = (\{1\})$, $a_p = (\mathbb{Z}_p)$ $p = 2, 3, 5, d_p = (D_p)$ $p = 2, 3, 5, b = (A_4)$, and $\omega = (A_5)$. The lattice of $P(A_5)$ is given by the diagram:

We extend the ordering \leq to a total ordering by setting $\iota < a_2 < a_3 < a_5 < d_2 < d_3 < d_5 < b < \omega$. It is a simple but tedious task to compute the double coset decompositions for pairs of subgroups of A_5 , and then to compute the constants V_{ac} for all $a, c \in P(A_5)$. This information is given by the matrix

$$M = \begin{pmatrix} 60 \\ 30 & 2 \\ 20 & 0 & 2 \\ 12 & 0 & 0 & 2 \\ 15 & 3 & 0 & 0 & 3 \\ 10 & 2 & 1 & 0 & 0 & 1 \\ 6 & 2 & 0 & 1 & 0 & 0 & 1 \\ 5 & 1 & 2 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

We now consider the prime p = 2. Then $P^* = \{d_2, d_3, d_5, b, \omega\}$,

$$M_{2} = \begin{pmatrix} 1 & & & \\ 0 & 1 & & \\ 0 & 0 & 1 & \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \quad \text{and} \quad M_{2}^{-1} = \begin{pmatrix} 1 & & & \\ 0 & 1 & & \\ 0 & 0 & 1 & \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

Therefore,

From 5.5(c) we have $\sup(d_2) = \{i, a_2, d_2\}$, $\sup(d_3) = \{a_3, d_3\}$, $\sup(d_5) = \{a_5, d_5\}$, $\sup(b) = \{b\}$, and $\sup(\omega) = \{\omega\}$. Also, from 5.5(a), the primitive idempotents of $B_2(A_5)$ (mod $J_2(A_5)$) are $e_{d_p} \equiv [S_{d_p}] \ p = 2, 3, 5, \quad e_b \equiv [S_b] + [s_{d_2}], \quad \text{and} \quad e_{\omega} \equiv [S_{\omega}] + [S_b] + [S_{d_5}] + [S_{d_5}].$

From 5.5(c), the dimensions of the local direct factors are 3, 2, 2, 1, 1, respectively. Moreover, $B_2(A_5) \cdot e_{d_2}$ has 2-nilpotent radical. This follows from direct computation, using the fact [6, Lemma 3] that

 $J(B_2(A_5) \cdot e_{d_2}) = \mathbb{Z}_p[S_1] \oplus \mathbb{Z}_p[S_{a_2}]$ (since D_2 is 2-Sylow in A_5). Algebras over finite fields of dimension 2 or 3 have been completely classified by Raghavendran [8, Theorems 10, 11]. In particular, a local ring of dimension 2 over \mathbb{Z}_p is isomorphic with the ring of matrices $R_p(2) = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in \mathbb{Z}_p \}$, while a local ring of dimension 3 with 2-nilpotent radical is isomorphic with the ring of matrices

$$R_{p}(3) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} : a, b, c \in \mathbb{Z}_{p} \right\}.$$

From this discussion it follows that: $B_2(A_5) \simeq \mathbb{Z}_2 \dotplus \mathbb{Z}_2$

$$B_3(A_5) \simeq \mathbb{Z}_3 \dotplus \mathbb{Z}_4$$
 and
$$B_5(A_5) \simeq \mathbb{Z}_5 \dotplus \mathbb{Z}_5 + \mathbb{Z}_5 \dotplus \mathbb{Z}_5 \dotplus \mathbb{Z}_5 \dotplus \mathbb{Z}_5 \dotplus \mathbb{Z}_5 \dotplus \mathbb{Z}_5 + \mathbb{Z}_5 \dotplus \mathbb{Z}_5 \dotplus \mathbb{Z}_5 + \mathbb{Z}_5 \dotplus \mathbb{Z}_5 + \mathbb{$$

7. The structure of the Support

This section is devoted to the problem of giving a non-combinatorial description of supp(a), for any $a \in P^*$. At the heart of this work, and what follows in Section 8, is the following lemma.

7.1. LEMMA. Suppose c, $d \in P$ are such that H_d is G-conjugate to a normal subgroup of H_c (notation: $H_d \preceq H_c$) of p-power index. Then for all $a \in P$, $V_{ad} \equiv V_{ac}$ (mod p).

Proof. We may assume $H_d \subseteq H_c$. Take $H_c - H_a$ and $H_d - H_a$ double coset decompositions:

$$G = \bigcup_{i=1}^{V_{ac}} H_c \tau_i H_a \cup \bigcup_{i=1}^{k} H_c \alpha_i H_a$$

and

$$G = \bigcup_{i=1}^{\nu_{ad}} H_d \sigma_i H_a \cup \bigcup_{i=1}^m H_d \beta_i H_a,$$

where for all i, $H_c^{\tau_i} \subseteq H_a$, $H_d^{\sigma_i} \subseteq H_a$, $H_c^{\alpha_i} \not\subseteq H_a$, and $H_d^{\beta_i} \not\subseteq H_a$. Denote $S_i = H_d \sigma_i H_a$ and let $S = \{S_i : 1 \le i \le V_{ad}\}$. Since H_d is normal in H_c , there is a well-defined H_c action on S given by $\sigma S_i = S_i$ if and only if $\sigma \sigma_i \in S_i$, all

 $\sigma \in H_c$. Evidently, $H_d \subseteq \operatorname{Stab}_{H_c}(S_i)$ and $\operatorname{Stab}_{H_c}(S_i) = H_c \cap {}^{\sigma_i}H_a$. Thus by hypothesis, $|\operatorname{Orb}_{H_c}(S_i)| = (H_c : \operatorname{Stab}_{H_c}(S_i))$ is p-power for all i, with $|\operatorname{Orb}_{H_c}(S_i)| = 1$ if and only if $H_c^{\sigma_i} \subseteq H_a$.

Now observe that $V_{ac} = |\{\sigma_i \colon H_c^{\sigma_i} \subseteq H_a\}|$. To see this, define a map from $\{\sigma_i \colon H_c^{\sigma_i} \subseteq H_a\}$ to $\{\tau_j \colon 1 \leqslant j \leqslant V_{ac}\}$ by $\sigma_i \to \tau_j$ if and only if $\sigma_i \in H_c \tau_j H_a$. Note that $H_c \tau_i H_a = \tau_i H_a$ for $1 \leqslant i \leqslant V_{ac}$, and if $H_c^{\sigma_i} \leqslant H_a$, then $H_d \sigma_i H_a = \sigma_i H_a = \tau_j H_a$ for some j, $1 \leqslant j \leqslant V_{ac}$. Thus $\sigma_i \to \tau_j$ defines a bijection. Since S is a disjoint union of H_c orbits, $V_{ad} = |S| \equiv \sum_{H_c^{\sigma_i} \subseteq H_a} 1 = |\{\sigma_i \colon H_c^{\sigma_i} \subseteq H_a\}| = V_{ac} \pmod{p}$.

7.2. COROLLARY. (Sylow) If $p \mid |G|$, then the number of p-Sylow subgroups of G is congruent to one modulo p.

Proof. Let c denote the class of the p-Sylow subgroups. Take d = t and a = c in 7.1.

For any subgroup $H \le G$ we let $O^p(H)$ denote the (unique) smallest normal subgroup of H of p-power index.

- 7.3. THEOREM. Let $a \in P^*$ and $d \in P$. The following are equivalent.
 - (a) $d \in \text{supp}(a)$.
- (b) There is a normal chain $H_d = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n \sim H_a$ with each quotient a p-group.
 - (c) $O^p(H_a) \lesssim H_d \lesssim H_a$.
- *Proof.* (b) \Rightarrow (a) Induce on *n*. The case n=0 being clear, assume that $n \ge 1$. Choose $c \in P$ with $H_1 \sim H_c$. By induction, $c \in \text{supp}(a)$. Applying 7.1 we then have $\psi_d(e_a) = \sum_b \lambda_{ab} V_{bd} = \sum_b \lambda_{ab} V_{bc} = \psi_c(e_a) = 1$. Therefore, $d \in \text{supp}(a)$.
- (a) \Rightarrow (b) We define the chain inductively. Let $H_0 = H_d$, and assume we have constructed $H_0 \lhd H_1 \lhd \cdots \lhd H_k$ with each quotient a p-group. Choose $c \in P$ with $H_k \sim H_c$. Note that if $c \in P^*$ then by the implication (b) \Rightarrow (a) we have $d \in \operatorname{supp}(c) \cap \operatorname{supp}(a)$, thus c = a and the chain is complete. If $c \notin P^*$ then $p \mid (N_G(H_c): H_c)$, so let $H \leqslant G$ be such that H/H_c is p-Sylow in $N_G(H_c)/H_c$. Then $H_k \gtrsim H$, so there is a subgroup $H_{k+1} \sim H$ with $H_k \lhd H_{k+1}$ and the quotient a p-group.
 - (b)⇔(c) is standard, and we omit the proof. ■

This Theorem has two interesting corollaries.

7.4. COROLLARY. If p exactly divides |G|, then the local direct factors of B_p have \mathbb{Z}_p -dimension either one or two.

Proof. By 4.3 and 5.4 it suffices to show that for any $a \in P^*$, $\operatorname{supp}(a)|=1$ or 2. If p exactly divides $|H_a|$, then there can be at most one normal subgroup of H_a of index p, while there can be no such subgroups if p does not divide $|H_a|$. Apply 7.3.

In fact, this Corollary is precise in the sense that if $p^2 \mid |G|$, then the local direct factor corresponding to a p-Sylow has dimension at least 3 (see [6]).

Using the characterization of dimension 2 algebras over \mathbb{Z}_p as in Section 6 we find that if |G| is square free, then for any prime p, $B_p(G) \simeq \mathbb{Z}_p^{(r)} \dotplus R_p(2)^{(s)}$, for some nonnegative integers r, s, depending on p, with s>0 if and only if $p \mid |G|$. Since $R_p(2)$ has a unique proper ideal, it is trivial to check that $R_p(2)$ is self-injective. Since it is also Artinian, $R_p(2)$ is quasi-Frobenius. Moreover, the property of being quasi-Frobenius is invariant under finite direct products and scalar extensions. Hence we obtain in a more concrete fashion Corollary 2 of [6].

7.5. COROLLARY. If G has square free order then for any field F, $F \otimes_{\mathbb{Z}} B(G)$ is a quasi-Frobenius F-algebra.

8. Applications to Modular Representations

We now discuss \mathbb{Z}_p -representations of the group G, where we fix a prime p dividing |G|. For any G-set S, the permutation representation of S is integral, so by reducing modulo p we obtain a \mathbb{Z}_p -representation whose character will be dnoted by ξ_S . In particular if $S = S_a$ we denote by ξ_a the permutation character $1_{H_a}^G$ reduced modulo p. This correspondence yields a ring homomorphism $B(G) \to X(G, p)$, where X(G, p) is the ring of \mathbb{Z}_p -characters. Since pB(G) is contained in the kernel of this map, there is a ring homomorphism $\theta: B_p(G) \to X(G, p)$, where θ satisfies $\theta([S]) = \xi_S$ for any G-set S. For each $\sigma \in G$, we let $a_\sigma \in P$ denote the class of the cyclic subgroup $\langle \sigma \rangle$ of G.

- 8.1. PROPOSITION. (a) Let $b \in P$ and $\sigma \in G$. Then $\xi_b(\sigma) = V_{ba_{\sigma}}$ (considered in \mathbb{Z}_p). In particular, if $b \notin P^*$, then $[S_b] \in \ker \theta$.
- (b) Let $a \in P^*$ and denote $\mathcal{U}_a = \{ \sigma \in G : O^p(H_a) \leq \langle \sigma \rangle \leq H_a \}$. Then $\theta(e_a)$ is the indicator function of the set \mathcal{U}_a . In particular, $e_a \notin \ker \theta$ if and only if H_a is p-hyperelementary.
- *Proof.* (a) Let $m = (1/|H_b|) | \{ \tau \in G: \sigma \tau H_b = \tau H_b \} |$, then by definition $\xi_b(\sigma)$ equals m reduced modulo p. But $\sigma \tau H_b = \tau H_b$ if and only if $\langle \sigma \rangle^\tau \leq H_b$, so that $m = V_{ba_\sigma}$, which is the first statement. The second statement now follows from 3.2.

(b) Let $\sigma \in G$, then by 5.5 we have $\theta(e_a)(\sigma) = \theta(\sum_b \lambda_{ab}[S_b])(\sigma) = \sum_b \lambda_{ab} V_{ba_a} = W_{aa_a}$. Apply 5.5(c) and 7.3 to get the first statement. Finally, $e_a \notin \ker \theta$ if and only if \mathcal{U}_a is nonempty if and only if $O^p(H_a)$ is cyclic if and only if H_a is p-hyperelementary.

It will be helpful to have another description of the sets \mathcal{U}_a . Towards this we define, for any *p*-regular element x of G, the set $\mathcal{S}_x = \{ \sigma \in G : \langle \sigma' \rangle \sim \langle x \rangle \}$, where σ' denotes the *p*-prime part of σ (see [5]).

- 8.2. PROPOSITION. (a) Let $a \in P^*$ be such that $e_a \notin \ker \theta$, and let $x \in G$ be any generator of the cyclic p'-group $O^p(H_a)$. Then $\mathcal{U}_a = \mathcal{S}_x$.
- (b) Conversely, for any p-regular $x \in G$, there exists a unique $a \in P^*$ such that $\langle x \rangle \sim O^p(H_a)$, and for this a, $\mathcal{U}_a = \mathcal{L}_x$.
- *Proof.* (a) Choose $b \in P$ with $H_b \sim O^p(H_a)$. If $\sigma \in \mathcal{U}_a$, then $H_b \lesssim \langle \sigma \rangle$, hence $\langle \sigma' \rangle \sim H_b \sim \langle x \rangle$ implies $\sigma \in \mathcal{G}_x$. Conversely, if $\sigma \in \mathcal{G}_x$ then $H_b \sim \langle \sigma' \rangle \leqslant \langle \sigma \rangle$. Choose $c \in P^*$ with $a_\sigma \in \operatorname{supp}(c)$. Then by 7.3, $b \in \operatorname{supp}(c) \cap \operatorname{supp}(a)$, whence c = a by 5.1. Thus $a_\sigma \leqslant a$, so $\langle \sigma \rangle \lesssim H_a$. By definition, $\sigma \in \mathcal{U}_a$.
- (b) Say $\langle x \rangle \sim H_b$, some $b \in P$, and choose $a \in P^*$ with $b \in \text{supp}(a)$. Obviously, $H_b \sim O^p(H_a)$, and by part (a), $\mathcal{U}_a = \mathcal{S}_x$. Uniqueness follows directly from 5.1.

This proposition has a a consequence the following modular version of the main theorem of Gluck [5].

- 8.3. THEOREM. Let p be a prime dividing |G|. Then for any p-regular $x \in G$, the indicator function $I_{\mathscr{L}_x}$ is in the image of θ . In particular we may write $I_{\mathscr{L}_x} = \sum_H u_H 1_H^G$, $u_H \in \mathbb{Z}_p$, where the sum ranges over p-hyperelementary subgroups H satisfying $p \nmid (N_G(H): H)$ and $H \lesssim H_a$, where $a \in P^*$ is such that $\mathscr{U}_a = \mathscr{L}_x$.
- *Proof.* Let $a \in P^*$ be as in 8.2(b). Since $\mathcal{U}_a = \mathcal{S}_x$ is nonempty, H_a and all subconjugate subgroups are p-hyperelementary. Then, $I_{\mathcal{S}_x} = I_{\mathcal{U}_a} = \theta(e_a) = \theta(\sum_{b \leq a} \lambda_{ab} [S_b]) = \sum_{b \leq a, b \in P^*} \lambda_{ab} \xi_b$. A change of notation gives the result.

We now describe the image of θ . Call a character $\chi: G \to \mathbb{Z}_p$ p-constant if whenever σ , $\tau \in G$ with $\langle \sigma' \rangle \sim \langle \tau' \rangle$, then $\chi(\sigma) = \chi(\tau)$. The essence of the Artin induction theorem is that the corresponding property holds for rational characters [1, Lemma 39.4], however, it is easy to discover \mathbb{Z}_p -characters that are not p-constant. Nevertheless, it is clear that sums and products of p-constant characters are again p-constant, and we obtain

- 8.4. THOREM. The image of θ is the subring of X(G, p) consisting of the p-constant characters.
- *Proof.* \subseteq By 5.4 and 8.1(a), it suffices to show that $\theta([S_a]e_a)$ is p-constant for any $a \in P^*$. Choose $x \in G$ as in 8.2, and let $\sigma, \tau \in G$ be such that $\langle \sigma' \rangle \sim \langle \tau' \rangle$. If $\sigma \notin \mathscr{S}_x$ then plainly $\tau \notin \mathscr{S}_x$, hence $\theta([S_a]e_a)(\sigma) = \theta([S_a]e_a)(\tau) = 0$ in this case. Assume $\sigma, \tau \in \mathscr{S}_x$. Then by 7.1, $\theta([S_a]e_a)(\sigma) = \xi_a(\sigma) = V_{aa_\sigma} = V_{aa_{\tau'}} = V_{aa_{\tau'}} = \xi_a(\tau) = \theta([S_a]e_a)(\tau)$.
- \supseteq If χ is a p-constant character of G, then by definition χ is constant on each of the sets \mathscr{L}_{χ} for p-regular $\chi \in G$, hence on each of the sets \mathscr{U}_{α} , $\alpha \in P^*$. Say $\chi(\mathscr{U}_{\alpha}) = n_{\alpha} \in \mathbb{Z}_{p}$ $(n_{\alpha} := 0 \text{ if } \mathscr{U}_{\alpha} \text{ is empty})$. Then $\chi = \chi \cdot 1 = \chi \cdot \theta(\sum_{\alpha \in P^*} e_{\alpha}) = \sum_{\alpha \in P^*} \chi \cdot I_{\mathscr{U}_{\alpha}} = \sum_{\alpha \in P^*} n_{\alpha} I_{\mathscr{U}_{\alpha}} = \theta(\sum_{\alpha \in P^*} n_{\alpha} e_{\alpha}) \in \text{image of } \theta$.

Finally, as a corollary of this result and 8.3, we obtain the following modular version of the Artin induction theorem.

8.5. THEOREM. Any p-constant character $\chi: G \to \mathbb{Z}_p$ is a \mathbb{Z}_p -linear combination $\chi = \sum_H u_H 1_H^G$, where H ranges over those p-hyperelementary subgroups of G such that $p \nmid (N_G(H): H)$.

REFERENCES

- C. W. Curtis and I. Reiner, "Representation Theory of Finite Groups and Associative Algebras," Pure and Appl. Math., Vol. 11, Interscience, New York, 1962.
- 2. A. Dress, A characterization of solvable groups, Math. Z. 110 (1969), 213-217.
- A. Dress, "Notes on the Theory of Representations of Finite Groups. Part I. The Burnside Ring of a Finite Group and some AGN-Applications," multicopied notes, Universität Bielefeld, 1971.
- 4. D. GLUCK, Idempotent formula for the Burnside algebra with applications to the p-sub-group simplicial complex, *Illinois J. Math.* 25 (1981), 63-67.
- D. GLUCK, A character table bound for the Schur index, Illinois J. Math. 25 (1981), 649-653.
- 6. W. H. Gustafson, Burnside rings which are Gorenstein, Comm. Algebra 5 (1977), 1-15.
- R. S. Pierce, "Associative Algebras," Graduate Texts in Mathematics, Vol. 88, Springer-Verlag, Berlin/Heidelberg/New York, 1982.
- 8. R. RAGHAVENDRAN, Finite associative rings, Compositio Math. 21 (1969), 195-229.
- 9. L. SOLOMON, The Burnside algebra of a finite group, J. Combin. Theory 2 (1967), 603-615.