GREEN FUNCTOR CONSTRUCTIONS IN THE THEORY OF ASSOCIATIVE ALGEBRAS.

Item Type	text; Dissertation-Reproduction (electronic)
Authors	JACOBSON, ELIOT THOMAS.
Publisher	The University of Arizona.
Rights	Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Download date	02/06/2018 20:59:05 Link to Item http://hdl.handle.net/10150/186082

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

University
 Microfilms International

Jacobson, Eliot Thomas

GREEN FUNCTOR CONSTRUCTIONS IN THE THEORY OF ASSOCIATIVE ALGEBRAS

The University of Arizona
Ph.D. 1983
University Microfilms
International ${ }_{300 \mathrm{~N} . \text { Zeeb Road, Ann Arbor, M14 } 48106}$

GREEN FUNCTOR CONSTRUCTIONS

IN THE THEORY OF ASSOCIATIVE ALGEBRAS

by
Eliot Jacobson

A Dissertation Submitted to the Faculty of the DEPARTMENT OF MATHEMATICS

In Partial Fulfillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
In the Graduate College
THE UNIVERSITY OF ARIZONA

1983

As members of the Final Examination Committee, we certify that we have read the dissertation prepared by \qquad Eliot Thomas Jacobson entitled \qquad _ of Associative Algebras
and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

Dissertation Director

$$
\frac{4 / 7 / 83}{\text { Dale }}
$$

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

Tiger got to hunt,
Bird got to fly;
Man got to sit and wonder, "why, why, why?"

Tiger got to sleep,
Bird got to land;
Man got to tell himself he understand.
-The Books of Bokonon

ACKNOWLEDGMENTS

Special thanks are due many people, both inside and outside of this department, for their assistance in helping me towards mathematical maturity, Among the excellent teachers I've known, Larry Grove, Theodore Laetsch, Daniel Madden, Warren May, Richard Pierce, Robert Valentini, and William Vélez deserve more than modest commendation; they have stimulated me with the clarity and depth of their presentations, and have helped to provide the foundations for my further studies. I wish to thank my advisor, Richard Pierce, for his motivating ideas, his willingness to listen to mine, his concern with the quality and style of my results, and especially for his refusal to let me pursue "abstract nonsense" without definite examples and computations in mind. I would like to thank the Department of Mathematics for their continued support, financial and otherwise. Thanks also to my typist, Mrs. Sarah Oordt, whose superb skills are demonstrated within. Finally, the warmest love and thanks go to my family, Kathy, Lufian, and Shawn, for surviving this experience with me; every word that follows is dedicated to them.

TABLE OF CONTENTS

Page
ABSTRACT vii
CHAPTER

1. INTRODUCTION 1
2. PRELIMINARY REMARKS 5
The Burnside Ring 5Mackey-Functors andFrobenius-Functors10
3. THE F-BURNSIDE RING 14
The Basic Construction 14
A Cancellation Theorem in (G, S, F) 16
A_{F} is a Green-Functor 18
A Basis for $A_{F}(G)$ 25
4. FUNCTORIAL PROPERTIES 30
5. STRUCTURE THEORY 39
The structure of $Q A_{F}(G)$ 39
The structure of $\emptyset A_{F}(G / H)$ 51
6. PRIME IDEALS IN THE F-BURNSIDE RING 56
An Embedding iheorem for $A_{F}(G)$ 56
Prime Ideals 58
The Extension $A_{F}(G) / A(G)$ 64
7. THE BRAUER RING OF A FIELD 67
Tensor Products of Separable Algebras 67
The Brauer Ring 70
Induction and Restriction 75
Page
8. APPLICATIONS OF INDUCTION THEORY TO ASSOCIATIVE ALGEBRAS 79
A Category Anti-Equivalence 79
The Isomorphism Theorem 87
Consequences of the Mackey Induction Lemma 90
9. THE BRAUER RINGS OF Q_{P} AND Q 94
Normal Algebras 94
The Ring BS (E, Q_{p}) 96
The Ring $B S(E, Q)$ 99
REFERENCES 106

ABSTRACT

Let G be a finite group. Given a contravariant, product preserving functor $F: G-s e t s \rightarrow A B$, we construct a Green-functor $A_{F}: G-s e t s \rightarrow$ CRNG which specializes to the Burnside ring functor when F is trivial. A_{F} permits a natural addition and multiplication between elements in the various groups $F(S), S \in G-s e t s . ~ I f ~ G ~ i s ~ t h e ~ G a l o i s ~$ group of a field extension L / K, and SEP denotes the category of K-algebras which are isomorphic with a finite product of subfields of L, then any covariant, product preserving functor $\rho: S E P \rightarrow A B$ induces a functor $F_{\rho}: G \rightarrow A B$, and thus the Green-functor A_{ρ} may be obtained. We use this observation for the case $\rho=\mathrm{Br}$, the Brauer group functor, and show that $A_{B r}(G / G)$ is free on K-algebra isomorphism classes of division algebras with center in SEP. We then interpret the induction theory of Mackey-functors in this context. For a certain class of functors F, the structure of A_{F} is especially tractable; for these functors we deduce that $Q\left(X \mathbb{Z}_{F} A_{F}(G / G) \cong \Pi Q F(S)\right.$, where the product is over isomorphism class representatives of transitive G-sets. This allows for the computation of the prime ideals of $A_{F}(G / G)$, and for an explicit structure theorem for $A_{B r}$, when G is vii
the Galois group of a p-adic field. We finish by considering the case when $G=G a l(L / Q)$, for an arbitrary number field L.

CHAPTER 1

INTRODUCTION

Let L / K be a finite Galois field extension, with Galois group G. Let $C(L, K)$ be the category of $K-a l g e b r a s$ which are isomorphic with a finite product of subfields of L. We may then view the Brauer group as a covariant, additive functor $B r: C(L, K) \rightarrow A B$, where $A B$ denotes the category of abelian groups. Moreover, tensor product over K induces a multiplication among elements of the various groups $B r(A), A \in C(L, K)$. Since $C(L, K)$ is anti-equivalent with the category \hat{G} of finite $G-s e t s, i t i s$ natural to ask if, given any contravariant functor $F: \hat{G} \rightarrow A B$ which transforms sums into products, there is a tensor product-like multiplication among elements of the groups $F(S), S \in \hat{G}$. We outline such a construction (the details will be carried out in Chapter 3).

With G and F as above, for a G-set S define the category (G, S, F) to have as objects all triples (T, C_{i}, X), where $T \in \hat{G}, a: T \rightarrow S$ is a G-map, and $X \in F(T)$. A morphism from ($\mathrm{T}, \mathrm{a}, \mathrm{x}$) to ($\mathrm{V}, \mathrm{z}, \mathrm{y}$) is a G -map $\phi: \mathrm{T} \rightarrow \mathrm{V}$ such that $a=30$, and $F(\phi)(y)=x$. Then ($G, S, F)$ has direct sums and pullbacks, so we define $A_{F}(S)$ to be the
associated. Grothendieck ring $K_{0}(G, S, F)$. Multiplication in $A_{F}(S)$ essentially corresponds to the desired tensor product. For example, if $F(T)=\{1\}$ for every $G-s e t T$, then $A_{F}\left({ }^{*}\right)$ is the Burnside ring functor. In general, $A_{F}{ }^{(*)}$ is a Green-functor, and is, in particular, the leftadjoint to the natural forgetful functor $M \rightarrow M_{*}$ (see Chapter 4). If we apply this construction to the composite functor $\hat{G} \rightarrow C(I, K) \xrightarrow{B r} A B$, we obtain the Green-functor $A_{B r}(*)$. Especially, $A_{B r}(G)$ is free, with a basis corresponding to K -algebra ismorphism classes of division algebras with center in $C(L, K)$, where addition and multiplication are induced from direct product and tensor product (over K) respectively. The structure of $A_{B r}(G)$ can often be recovered from the following more general result.

For any G-set s, and $a \in \operatorname{Aut}_{G}(s)$, the group automorphism $F(\alpha)$ induces a ring automorphism of the group algebra $\mathcal{Q}(S)$. Let W_{S} denote the set of ring automorphisms of $Q F(S)$ obtained in this way. Let $2 F(S){ }^{W_{S}}$ denote the fixed ring. Our main structure theorem asserts that

$$
\mathscr{Q} \otimes_{\mathbb{Z}} A_{F}(G) \cong \Pi थ F(S)^{W_{S}}
$$

the product being over isomorphism classes of transitive Gsets (see Chapter 5). Moreover, this isomorphism embeds
$A_{F}(G)$ into $\operatorname{MZF}(S)$, which then allows us to describe the prime ideals of $A_{F}(G)$ (see Chapter 6).

Chapter 7 is concerned with an alternate description of the ring $A_{B r}(G)$, which is much more manageable for applications. In particular, by applying the Mackey induction lemma we obtain the following cancellation theorem. If A and B are separable L-algebras such that $A\left(X K_{K}^{L} \cong B\left(X K_{K}^{L}\right.\right.$ as L-algebras, then $A \cong B$ as K-algebras.

We conclude by computing $Q \times A_{B r}\left(E, Q_{p}\right)$, when E is a Galois extension of the p-adic field Q_{p}. This allows us to consider the ring $A_{B r}(N, Q)$, when N is a Galois extension of Q. However, its computation leads us to the thorny problems of the isomorphism of adele rings, and the arithmetic equivalence of two number fields. These active areas of current research go beyond the intentions of this dissertation. Hence we must be content with an incomplete structure theorem for $A_{B r}(N, Q)$.

Finally, we must warn the reader that the proofs of many early results are quite computational. Most of the details are not omitted. Repeatedly the author has suppressed the temptation to skip over straight-forward proofs, often leaving a tedium of technicalities in the wake. The feeling is that this gives the reader a fair choice in the selection of proofs he wishes to work through, and the knowledge that
someone, at least, has skinned his knuckles in checking all of the details.

CHAPTER 2

PRELIMINARY REMARKS

Throughout this chapter G will denote a fixed finite group. A G-set is a finite set on which G acts from the left. The category of all finite $G-s e t s$ will be denoted by G; its morphisms are set maps which commute with the action of G. Our objectives here are to define certain rings and functors associated with the category \hat{G}, and to set up some notation which will be useful to us throughout this dissertation.

The Burnside Ring

The set of isomorphism classes of finite G-sets becomes a commutative semi-ring with addition induced by disjoint union and multiplication by cartesian products. The Grothendieck ring constructed from this semi-ring is called the Burnside ring of G; it will be denoted $A(G)$. Thus, elements of $A(G)$ are formal differences [S] - [T] where $S, T \in \hat{G}$. Moreover, $[S]+[T]=[S \cup \mathbb{U}]$ and $[S][T]$ $=[S \times T]$.

Let $P=P(G)$ denote the set of all conjugacy classes of subgroups of G. For each $b \in P$, pick a representative H_{b} of b, and let S_{b} denote the transitive

G-set of cosets modulo H_{b}. For $a, b, c \in P$, let $V a, b, c$ be the number of orbits in $S_{a} \times S_{b}$, under the diagonal action of G, which are isomorphic with S_{C} as G-sets. The following proposition collects some well known properties of A (G) .

Proposition 2.1. (a) Additively, $A(G)$ is free on the set $\left\{\left[S_{a}\right]: a \in P\right\}$, that is, $\left\{S_{a}: a \in P\right\}$ is a complete set of representatives of isomorphism classes of transitive G-sets.
(b) If $S, T \in \hat{G}$. then $[S]=[T]$ if and only if $S \cong T$ as G-sets.
(c) For $a, b \in P,\left[S_{a}\right]\left[S_{b}\right]=\sum_{c \in P} V_{a, b}, c\left[S_{c}\right]$. Thus the $V_{a, b, c}$ are structure constants for $A(G)$. The set P has a natural partial ordering, where we set $a \leq b$ precisely when H_{a} is subconjugate to H_{b} (denoted $H_{a}<H_{b}$). As in Solomon (1967), $Q A(G)=Q \otimes_{\mathbb{Z}^{A}}(G)$ has primitive idempotents $\left\{e_{a}: a \in P\right\}$, where $e_{a}=\sum_{b \leq a} \lambda_{b, a}\left[s_{b}\right]$ for suitable constants $\lambda_{b, a} \in Q$. We shall define $\lambda_{b, a}=0$ if $b \underline{\&} a$ so that we may write $e_{a}=\sum_{b \in P} \lambda_{b, a}\left[s_{b}\right]$. It follows that $\sum_{c \in P} e_{c}=l_{A(G)}$, and $e_{a} e_{b}=\delta a b^{e}$, for all $a, b \in P$. We summarize some known results on the constants $\lambda_{a, b}$ and $v_{a, b, c}$.

Proposition 2.2. (a) for any $a \in P, \quad V_{a, a, a}=\lambda_{a, a}^{-1}$ $=\left[N_{G}\left(H_{a}\right): H_{a}\right]$.
(b) For any $a \in P,|G| e_{a} \in A(G)$. Thus $|G| \cdot \lambda_{b, a}$ $\in \mathbf{Z}$ for $a l l a, b \in P$.
(c) For any $a, b, c \in P, V_{a, b, c}=0$ unless both $c \leq a \quad$ and $\quad c \leq b$.

We just remark that $2.2(\mathrm{~b})$ can be strengthened to the statement $\left|N_{G}\left(H_{a}\right)\right| \cdot e_{a} \in A(G)$, for any $a \in P$, by the idempotent formula of Gluck (1981). However, we will have no use for this extra information. For brevity we shall denote $V_{a}=V_{a, a, a}$ and $V_{a, b}=V_{a, b, b}$ all $a, b \in P$. Fundamental to our later work are the following propositions relating the constants $V_{a, b, c}$ and $\lambda_{a, b}$.

Proposition 2.3. Let $a<b \in P$. Then for all $d \in P$, $\sum_{c \in P} \lambda_{c, b} V_{a, c}, d=0$.

Proof. Note that $0=e_{a} \cdot e_{b}$

$$
\begin{aligned}
& =\sum_{c, d} \lambda_{c, a}{ }^{\lambda} d, b^{\left[S_{c}\right]\left[S_{d}\right]} \\
& =\sum_{c, d, e} \lambda_{c, a}{ }^{\lambda} d, b^{V} c, d, e^{\left[S_{e}\right]} \\
& =\sum_{e}\left(\sum_{c, d} \lambda_{c, a}{ }^{\lambda} d, b^{V} c, d, e{ }^{V}\right)\left[s_{e}\right]
\end{aligned}
$$

By 2.1(a) it follows that
(*)

$$
\sum_{c, d} \lambda_{c, a} \lambda_{d, b} V_{c, d, e}=0 \text { for } a l l \text { e } \in P
$$

We establish the required formula by induction on $a \in P$ with respect to the partial order \leq. If $a=\{1\}$ (the unique minimal element) then since $\lambda_{c, a}=0$ if $c \notin a, ~(*)$ becomes $\lambda_{a, a} \sum_{d} \lambda_{d, b} V_{a, d, e}=0$, all $e \in P$. Since $\lambda_{a, a} \neq 0$ by $2.2(a)$, this starts the induction. Assume that. $a \neq\{1\}$, and that whenever $c<a$, and $e \in P$, then $\sum_{d} \lambda_{d, b} V_{c, d, e}$ $=0$. By (*), for any $e \in P$ we have

$$
\begin{aligned}
0 & =\lambda_{a, a} \sum_{d} \lambda_{d, b} V_{a, d, e}+\sum_{c<a} \lambda_{c, a}\left(\sum_{d} \lambda_{d, b} V_{c, d, e}\right) \\
& =\lambda_{a, a} \sum_{d} \lambda_{d, b} V_{a, d, e} \quad \text { (by induction). }
\end{aligned}
$$

Since $\lambda_{a, a} \neq 0, \sum_{d} \lambda_{d, b} V_{a, d, e}=0$ for all $e \in P$, as claimed.

Proposition 2.4. Let $a, b \in P$ with $b \notin a$. Then $\left[s_{a}\right] e_{b}=0$.

Proof. Note that $\left[s_{a}\right] e_{b}=\left[s_{a}\right] e_{b} e_{b}$

$$
\begin{aligned}
& =\sum_{c \leq b} \lambda_{c, b}\left[s_{a}\right]\left[s_{c}\right] e_{b} \\
& =\sum_{c \leq b} a \leq \sum_{a, c} \lambda_{c, b} v_{a, c, d}\left[s_{d}\right] e_{b} .
\end{aligned}
$$

Thus it suffices to show $\left[s_{d}\right] e_{b}=0$ whenever $c \leq b$ and $\mathrm{d} \leq \mathrm{a}, \mathrm{c}$. The condition $\mathrm{b} \not \leq a$ then forces $\mathrm{d}<\mathrm{b}$, so we
may as well assume $a<b$ to begin with. Then, by the above computation and Proposition 2.3,

$$
\left[s_{a}\right] e_{b}=\int_{d}\left(\sum_{c} \lambda_{c, b} v_{a, c, d}\right)\left[s_{d}\right] e_{b}=0
$$

Proposition 2.5. (a) For any $a \in P, \quad e_{a}=V_{a}^{-1}\left[S_{a}\right] e_{a}$.

$$
\text { (b) If } a, c \in P \text {, then } \sum_{b \in P} \lambda_{b, a} V_{a, b}, c=\lambda_{c, a} V_{a} \text {. }
$$

Proof. (a) $e_{a}=e_{a} \cdot e_{a}$

$$
\begin{aligned}
& =\sum_{b \leq a} \lambda_{b, a}\left[s_{b}\right] e_{a} \\
& =\lambda_{a, a}\left[s_{a}\right] e_{a}, \text { by } 2.4 \\
& =v_{a}^{-1}\left[s_{a}\right] e_{a}, \text { by } 2.2(a)
\end{aligned}
$$

(b) By (a), $e_{a}=V_{a}^{-1}\left[s_{a}\right] e_{a}$

$$
\begin{aligned}
& =v_{a}^{-1} \sum_{b} \lambda_{b, a}\left[s_{a}\right]\left[s_{b}\right] \\
& =v_{a}^{-1} \sum_{b, c} \lambda_{b, a} v_{a, b, c}^{\left[s_{c}\right]} \\
& =\sum_{c}\left(v_{a}^{-1} \sum_{b} \lambda_{b, a} v_{a, b, c}\right)\left[s_{c}\right] .
\end{aligned}
$$

Comparing coefficients and applying 2.1(a) yields

$$
\lambda_{c, a}=v_{a}^{-1} \sum_{b} \lambda_{b, a} v_{a, b, c}
$$

as claimed.

We must indicate some notational conventions in the category \hat{G}. We shall always use a subscripted K to denote an inclusion map in \hat{G}. For example, if $S, T \in \hat{G}$ we may denote by K_{S} the canonical inclusion of S into $S \dot{U} T$. If $a \in P$, we may use the notation $K_{a}: S_{a} \rightarrow S_{a} \dot{U} T$. Similarly, we shall always use a subscripted π to denote a projection map in \hat{G}. Thus one might see $\pi_{S}: S \times T \rightarrow S$, or $\pi_{a}: S_{a} \times T \rightarrow S_{a}$. The point is that the subscript will always be sufficient for the reader to deduce the map, explicit mention of domains and ranges will seldom be given.

Mackey-Functors and Frobenius-Functors

Various equivalent definitions of Mackey-functors, Frobenius-functors and Green-functors have appeared over the last few years. Our definitions roughly coincide with those of Kuchler (1970).

Definition 2.6. A Mackey-functor on G is a bifunctor $M=\left(M_{*}, M_{*}\right): \hat{G} \rightarrow A B$, where M^{*} is covariant, M_{*} is contravarient, M^{*} and M_{*} agree on objects, such that the following conditions are fulfilled by M.
(a) If

is a pullback diagram in \hat{G}, then the diagram

$$
\underset{M\left(X_{1}\right)}{M(X)} \xrightarrow{M *\left(\psi_{2}\right)} \underset{M_{1}\left(\psi_{1}\right)}{M\left(X_{2}\right)} \overbrace{M(Y)}^{\left(M_{*}\left(\phi_{2}\right)\right.}
$$

commutes.
(b) If $S_{1}, S_{2} \in \hat{G}$ with inclusions $K_{i}: S_{i} \rightarrow S_{1} \dot{U} S_{2}$, then the homomorphisms $M_{*}\left(K_{i}\right): M\left(S_{1} \dot{U} S_{2}\right) \rightarrow M\left(S_{i}\right)$ induce an isomorphism $M_{*}\left(K_{1}\right) \times M_{*}\left(K_{2}\right): M\left(S_{1}\right.$ U $\left.S_{2}\right)$ $\rightarrow M\left(S_{1}\right) \times M\left(S_{2}\right)$.

For a G-map $\alpha: S \rightarrow T$, we will denote $\alpha^{*}=M^{*}(\alpha)$ and $\alpha_{*}=M_{*}(\alpha)$ when no confusion will arise.

Definition 2.7. A Frobenius-functor on G is a bifunctor $M=\left(M^{*}, M_{*}\right): \hat{G} \rightarrow A B$, with M^{*} covariant, M_{*} contravariant, M^{*} and M_{*} coincide on objects, such that M satisfies the following.
(a) For each G-set $S, M(S)$ is a commutative ring with 1 .
(b) For each G-map $a: S \rightarrow T . \alpha_{*}: M(T) \rightarrow M(S)$ is a ring homomorphism (preserving unit).
(c) For each G-map $a: S \rightarrow T$ we may view $M(S)$ as a $M(T)-$ module via a_{*}. We then require $\alpha^{*}: M(S) \rightarrow M(T)$ to be
a $M(T)$-module homomorphism. Thus for any $s \in M(S)$, $t \in M(T)$, we have $\alpha^{*}\left(\alpha_{*}(t) \cdot s\right)=t \cdot \alpha^{*}(s)$ (Frobenius reciprocity).

Definition 2.8. A Green-functor on G is a bifunctor $M=\left(M_{*}, M_{*}\right): \hat{G} \rightarrow A B$ which is simultaneously both a Mackeyfunctor and a Frobenius-functor.

Finally, we wish to record two elementary properties of these functors which will be useful in Chapter 4.

Proposition 2.9. If $M: \hat{G} \rightarrow A B$ is a Mackey-functor, and if $\alpha: S \rightarrow T$ is an isomorphism of G-sets, then α^{*} and α_{*} are inverse isomorphisms.

Proof. Since α is an isomorphism, the diagrams

are pullbacks in \hat{G}. Applying $2.6(a)$ to each diagram yields $\alpha_{*} a^{*}=1_{M(S)}$ and $a^{*} \alpha_{*}=1_{M(T)}$.

Proposition 2.10. Let $S_{1}, S_{2} \in \hat{G}$, with inclusion maps $K_{i}: S_{i} \rightarrow S_{1}$ Uं S_{2}. If $M: \hat{G} \rightarrow A B$ is a Mackey-functor, then $K^{*}{ }_{1} K_{1 *}+K_{2}^{*} K_{2 *}: M\left(S_{1} \dot{U} S_{2}\right) \rightarrow M\left(S_{1} \dot{U} S_{2}\right)$ is the identity map.

Proof. The diagrams

are pullbacks. Then, by $2.6(a), K_{2 *} K_{1}^{*}=0$, and $K_{1 *} K_{1}^{*}=1$. Similarly, $K_{1} *_{2}^{*}=0$, and $K_{2} *^{K_{2}^{*}}=1$. If $x \in M\left(S_{1} \dot{U} S_{2}\right)$, then $K_{1 *}\left(K_{1}^{*} K_{1 *}(x)+K_{2}^{*} K_{2 *}(x)\right)=K_{1 *}(x)$, and $K_{2 *}\left(K_{1}^{*} K_{1 *}(x)+K_{2}^{*} K_{2 *}(x)\right)=K_{2 *}(x)$. By $2.6(b)$, $K_{1}^{*} K_{1 *}(x)+K_{2}^{*} K_{2 *}(x)=x$.

CHAPTER 3

THE F-BURNSIDE RING

In this chapter we shall construct one of the main objects of our study. We then prove a few elementary results which will be essential for later applications.

The Basic Construction

Let G be a finite group, fixed throughout the remainder of this chapter. Let $F: \hat{G} \rightarrow A M$ be a contravariant functor, where $A M$ denotes the category of abelian monoids. For a G-map $\alpha: S \rightarrow T$, we shall denote $\alpha=F(\alpha): F(T) \rightarrow F(S)$. If given any two $G-$ sets, S_{1}, S_{2}, with inclusions $K_{i}: S_{i}$ $\rightarrow S_{1}$ U S_{2}, the induced map $K_{1}^{0} \times K_{2}^{0}: F\left(S_{1}\right.$ U $\left.S_{2}\right) \rightarrow F\left(S_{1}\right)$ $\times F\left(S_{2}\right)$ is an isomorphism, then we shall call F additive. For an additive functor F and elements $x \in F\left(S_{1}\right)$, $y \in F\left(S_{2}\right)$, we introduce the notation $x \dot{+} y$ to denote the unique element of $F\left(S_{1} \dot{U} S_{2}\right)$ satisfying $K_{1}^{0} \times K_{2}^{0}(x \dot{+} y)$ $=(x, y)$. Thus $K_{1}^{0}(x+y)=x$, and $K_{2}^{0}(x \dot{+} y)=y$. For the remainder of this section, assume we have a fixed additive contravariant functor $F: \hat{G} \rightarrow A M$.

For any $G-s e t$, we form the category (G, S, F) as follows:

Objects: Triples (T, ϕ, x) where $T \in \hat{G}, \phi: T \rightarrow S$ is a $G-$ map, and $x \in F(T)$.

Morphisms: A morphism $(T, \phi, X) \rightarrow(V, \psi, y)$ is a G-map $\alpha: T \rightarrow V$ such that $\phi=\psi \alpha$ and $\alpha^{0}(y)=x$.

Given $(T, \phi, X),(V, \psi, Y)$ in (G, S, F), define $(T, \phi, x) \ominus(V, \psi, y)$ to equal ($T \dot{U} V, \phi \dot{U} \psi, x \dot{+} y$). The later is an object of (G, S, F) since F is additive. It is routine to check that Θ is a categorical coproduct for (G, S, F). Also, by considering the pullback diagram

in \hat{G}, we may define $(T, \phi, x) x_{S}(V, \forall, y)$ to equal $\left(T x_{S} V, \phi x_{S} \psi, \pi_{T}^{0}(x) \cdot \pi_{V}^{0}(y)\right)$.

The operations Θ and x_{S} satisfy all of the necessary identities (check!) to form the half ring $A_{F}^{+}(S)$ of isomorphism classes of objects in (G, S, F), with addition induced by \odot and multiplication by x_{S}. We denote the associated Grothendieck ring by $A_{F}(S)$, and refer to this ring as the F-Burnside ring of G-sets over S. We let $[T, \phi, x]$ denote the image of (T, ϕ, x) in $A_{F}(S)$. The following lemma collects some standard results about the

Grothendieck group of a category with product, as applied to $A_{F}(S) \quad(B a s s$ 1968, pp. 344-47).

Lemma 3.1. (a) Each element of $A_{F}(S)$ has the form $[T, \phi, x]-[V, \psi, Y]$, for suitable $(T, \phi, X),(V, \psi, Y)$ in (G, S, F).
(b) $[T, \phi, x]+[V, \psi, y]=[T$ Ur V, ϕ U $\psi, x \dot{+} y]$, and $[T, \phi, x] \cdot[V, \psi, Y]=\left[T x_{S} V, \phi X_{S} \psi, \pi_{T}^{0}(x) \cdot \pi_{V}^{0}(y)\right]$.
(c) $[T, \phi, X]=[V, \psi, Y]$ if and only if there exists (U, λ, z) in (G, S, F) such that ($T \dot{U} U, \phi \dot{U} \lambda, x+z$) $\cong(V \dot{\cup} \cup, \psi \dot{\cup} \lambda, Y \dot{+} Z)$ in (G, S, F).

A Cancellation Theorem in (G, S, F)

The goal of this section is a strengthening of 3.1 (c). Fixed throughout the present discussion is a G-set S, and an additive contravariant functor $F: \hat{G} \rightarrow$ AM.

Lemma 3.2. Suppose $(T, \alpha, x),(V, \beta, y)$ and (W, γ, z) are in ($G, S, F)$, and that T is a transitive $G-s e t$. If $(T, \alpha, x) \ominus(V, \beta, y) \cong(T, \alpha, x) \ominus(W, \gamma, z)$ in (G, S, F), then $(V, \beta, Y) \cong(W, \gamma, z)$.

Proof. By hypothesis, ($T \dot{U} V, \alpha \dot{U} \beta, x \dot{+} y) \cong(T \dot{U} W, \alpha \dot{U} \gamma$, $x \dot{+} z$), so there is a G-isomorphism $\phi: T \dot{U} V \rightarrow T \dot{U} W$ with $\alpha \dot{U} \beta=(\alpha \dot{U} \gamma) \circ \phi$ and $\phi^{0}(x \dot{+})=x \dot{+} y$. Since T is transitive, and $\phi(T)$ is non-empty, either $\phi(T)=T$ or $\phi(T) \subseteq W$. We consider these cases separately.

Case 1) $\phi(T)=T$. Then $\phi(V)=W$. Write $\phi=\mu \dot{U} \lambda$, with $\mu=\left.\phi\right|_{T}: T \rightarrow T$, and $\lambda=\left.\phi\right|_{V}: V \rightarrow W$. Let $K_{V}: V \rightarrow T \dot{U} V$ and $K_{W}: W \rightarrow T \dot{U} W$ be inclusions. Clearly, $\phi K_{V}=K_{W} \lambda$. Thus, $\quad \lambda^{0}(z)=\lambda^{0} K_{W}^{0}(x+z)=K_{V^{\phi}}^{0}(x+z)=K_{V}^{0}(x+y)=y$. Moreover, if $v \in V$, then $\gamma \lambda(v)=(\alpha \dot{U} \gamma) \phi(v)=(\alpha \dot{U} \beta)(v)$ $=\beta(v)$, that is, $\gamma \lambda=\beta$. It follows that $\lambda:(v, \beta, y)$ $\rightarrow(W, Y, z)$ is an isomorphism, finishing this case.

Case 2) $\phi(T) \subseteq W$, and therefore $T \subseteq \phi(V)$. Hence we may write $V=T_{1} \dot{U} V^{\prime}$, where $\phi\left(T_{1}\right)=T$, and $W=T_{2}$ $\dot{U} W^{\prime}$, where $\phi(T)=T_{2}$. By additivity of F, write $Y=x_{1}$ $\dot{+} y^{\prime}$ and $z=x_{2} \dot{+} z^{\prime}$, where $x_{i} \in F\left(T_{i}\right), Y^{\prime} \in F\left(V^{\prime}\right)$ and $z^{\prime} \in F\left(W^{\prime}\right)$. We may also write $\phi=\mu \dot{U} \lambda \dot{U} \delta$, with $\mu=\left.\phi\right|_{T}$: $T \rightarrow T_{2}, \quad \lambda=\left.\phi\right|_{T_{1}}: T_{1} \rightarrow T$, and $\delta=\left.\phi\right|_{V^{\prime}}: V^{\prime} \rightarrow W^{\prime}$ all isomorphisms. As in Case 1 , it follows that $\mu^{0}\left(x_{2}\right)=x, \quad \lambda^{0}(x)$ $=x_{1}$ and $\delta^{0}\left(z^{\prime}\right)=y^{\prime}$. Define $\psi: V \rightarrow W$ to be $\mu \lambda \dot{U} \delta$. Then $\psi^{0}(z)=(\mu \lambda \dot{U} \delta)^{0}\left(x_{2} \dot{+} z^{\prime}\right)=(\mu \lambda)^{0}\left(x_{2}\right)+\delta^{0}\left(z^{\prime}\right)$ $=\lambda^{0} \mu^{0}\left(x_{2}\right) \dot{+} \delta^{0}\left(z^{\prime}\right)=x_{1} \dot{+} y^{\prime}=y$. Finally, to show $\beta=\gamma \dot{u}$, let $v \in V$. Let $K_{T}: T \rightarrow T \dot{U} V$ be inclusion, so that $\mu=\phi K_{T}$. If $v \in T_{1}$, then $\gamma \psi(v)=\gamma \mu \lambda(v)=\gamma \phi K_{T} \lambda(v)=(\alpha \dot{U} \gamma) \phi\left(K_{T} \lambda(v)\right)$ $=(\alpha \dot{U} \beta)\left(K_{T} \lambda(v)\right)=\alpha \lambda(v)=(\alpha \dot{U} \gamma) \phi(v)=(\alpha \dot{U} \beta)(v)=\beta(v)$. If $v \in V^{\prime}$ then $\gamma \dot{\psi}(v)=\gamma \delta(v)=(\alpha \dot{U} \gamma) \phi(v)=\left(\begin{array}{l}\alpha \dot{U} \beta\end{array}\right)(v)$ $=B(V)$. Thus $\psi:(V, \beta, Y) \rightarrow(W, \gamma, z)$ is an isomorphism.

Theorem 3.3. Suppose $(T, \alpha, x),(V, B, Y),(W, \gamma, z) \in(G, S, F)$ satisfy $(T, \alpha, x) \bigoplus(V, \beta, y) \cong(T, \alpha, x) \bigoplus(W, \gamma, z)$. Then $(V, \beta, Y) \cong(W, \gamma, z)$.
Proof. Write $T=\underset{i=1}{n} T_{i}$, where each T_{i} is a transitive $G-$ set, and let $\alpha_{i}=\left.\alpha\right|_{T_{i}}: T_{i} \rightarrow S$. By additivity of F, there exists $x_{i} \in F\left(T_{i}\right)^{i}$ so that $(T, \alpha, x) \cong \bigoplus_{i=1}^{n}\left(T_{i}, \alpha_{i}, x_{i}\right)$. By the lemma, we may cancel the $\left(T_{i}, \alpha_{i}, x_{i}\right)$ one at a time yielding the result.

Corollary 3.4. $[V, \beta, Y]=[W, \gamma, z]$ in $A_{F}(S)$ if and only if $(V, \beta, Y) \cong(W, \gamma, z)$ in (G, S, F).

A_{F} is a Green-Functor

We shall now establish the fundamental fact that A_{F} is a Green-functor. More precisely, fix an additive contravariant functor $F: \hat{G} \rightarrow A M$, then we shall define covariant and contravariant morphism maps which turn the correspondence $S \rightarrow A_{F}(S)$ into the object map of a Green-functor.

Suppose $S, T \in \hat{G}$, and $\alpha: S \rightarrow T$ is a G-map. Then the map $(V, \phi, x) \rightarrow[V, \alpha \phi, x]$ from (G, S, F) to $A_{F}(T)$ respects isomorphism in (G, S, F) and is additive (preserves (). Thus there is an induced group homomorphism $\alpha^{*}=A_{F}^{*}(\alpha)$: $A_{F}(S) \rightarrow A_{F}(T)$ satisfying $\alpha^{*}([V, \phi, x])=[V, \alpha \phi, x]$, all $[V, \phi, x] \in A_{F}(S)$. To describe a map $a_{*}=A_{F}(\alpha): A_{F}(T) \rightarrow A_{F}(S)$,
note that for any $(W, \psi, Y) \in(G, T, F)$ we have a pullback diagram

hence an element $\left[W x_{T} S, \pi_{S}, \pi_{W}^{0}(y)\right]$ of $A_{F}(S)$.
Proposition 3.5. Given any G-map $\alpha: S \rightarrow T$, the correspondfence $(W, \psi, Y) \rightarrow\left[W x_{T} S, \pi_{S}, \pi_{W}^{0}(y)\right]$ induces a ring homormophism $a_{*}: A_{F}(T) \rightarrow A_{F}(S)$ satisfying $\alpha_{*}([W, \psi, Y])=\left[W x_{T} S, \pi S^{\prime} \pi_{W}^{0}(Y)\right]$, for all $[W, \psi, Y] \in A_{F}(T)$.

Proof: Define $\lambda:(G, T, F) \rightarrow A_{F}(S)$ by $\lambda(W, w, Y)$
$=\left[W x_{T} S, \pi_{S}, \pi_{W}^{0}(y)\right]$. It suffices to show that λ is constant on isomorphism classes, and that λ respects $\hat{\psi}$ and x_{T} (thus λ induces a_{*} above). Fix $(v, \phi, x),(w,: y, y)$ in (G, T, F).
i) If $(V, \phi, x) \cong(W, \psi, y)$, Choose $\beta: V \rightarrow W, \quad$ G isomorphism, with $\phi=\psi \beta$ and $\beta^{0}(y)=x$. If $(v, s) \in V x_{T} s$, then $\alpha(s)=\phi(v)=\psi(B(v))$, so that $(\beta(v), s) \in W x_{T} s$. Thus the map $\gamma: V X_{T} S \rightarrow W x_{T} S$ given by $\gamma(v, s)=(B(v), s)$ is a G-isomorphism. Plainly, $\pi_{S} \gamma=\pi_{S}$ and $\pi_{W} \gamma=\beta \pi_{V}$. Thus $\gamma^{0}{ }_{W}^{0}(y)=\pi_{V}^{0} \beta^{0}(y)=\pi_{V}^{0}(x)$. It follows that $Y:\left(V x_{T} S, \pi_{S}, \pi_{V}^{0}(x)\right)$
$\rightarrow\left(W x_{T} S, \pi_{S}, \pi_{W}^{0}(y)\right)$ is an isomorphism, hence $\left[V x_{T} S, \pi_{S}, \pi_{V}^{0}(x)\right]$
$=\left[W x_{T} S, \pi_{S}, \pi_{W}^{0}(y)\right]$ in $A_{F}(S)$.
ii) To see that λ respects it suffices to show that $\left(V x_{T} S \dot{U} W x_{T} S, \pi_{S} \dot{\cup} \pi_{S^{\prime}} \pi_{V}^{0}(x) \dot{+} \pi_{W}^{0}(y)\right)$
$\cong\left((V \dot{U} W) x_{T} S, \pi_{S}, \pi_{V U W}^{0}(x+y)\right)$. Define $\gamma: V x_{T} S$ U $W x_{T} S$
$\rightarrow(V \dot{U} \mathrm{~W}) \mathrm{x}_{\mathrm{T}} \mathrm{S}$ to be the identity. Evidently, γ is an isomorphism such that $\pi_{S} \gamma=\pi_{S} \dot{U} \pi_{S}$. We need $\gamma^{0} \pi_{V U W}^{0}(x+y)$
$=\pi_{V}^{0}(x)+\pi_{W}^{0}(y)$. Let $K_{V}: V x_{T} S \rightarrow V x_{T} S \dot{U} W x_{T} S$ and $j_{V}: V$
$\rightarrow V \dot{U} W$ be inclusions. Plainly, $\pi_{V U W} \gamma K_{V}=j_{V}{ }_{V}$. Thus
$K_{V}^{0}\left(\gamma^{0} \pi_{V j W}^{0}(x+y)\right)=\pi_{V}^{0} j_{V}^{0}(x+y)=\pi_{V}^{0}(x)$. similarly, if $K_{W}: W x_{T} S \rightarrow V x_{T} S \dot{j} W x_{T} S$ is inclusion, then $K_{W}^{0}\left(\gamma^{0} \pi_{V j W}^{0}(x+y)\right)$
$=\pi_{W}^{0}(y)$. By the additive of $F, \quad \gamma^{0} \pi_{V V_{W}}^{0}(x+y)$
$=\pi_{V}^{0}(x) \dot{+} \pi_{W}^{0}(y)$.
iii) To show that λ respects X_{S}, it suffices to show that $\left(\left(V x_{T} W\right) x_{T} S, \pi_{S^{\prime}} \quad \pi_{V x_{T}}^{0}\left(\pi_{V}^{0}(x) \cdot \pi_{W}^{0}(y)\right)\right)$ $\cong\left(\left(V x_{T} S\right) x_{S}\left(W x_{T} S\right), \pi_{S} x_{S} \pi_{S}, \quad \pi_{V x_{T} S}^{0}\left(\pi_{V}^{0}(x)\right) \cdot \pi_{W x_{T} S}^{0}\left(\pi_{W}^{0}(y)\right)\right)$. Define $\gamma:\left(V x_{T} W\right) x_{T} S \rightarrow\left(V x_{T} S\right) x_{S}\left(W x_{T} S\right)$ by $\gamma((V, W), s)$ $=((v, s),(w, s))$. Then γ is the canonical isomorphism, and it follows easily that $\pi_{S}=\left(\pi_{S} x_{S} \pi_{S}\right) \circ \gamma$. Moreover, the following diagram commutes

Thus, $\quad \gamma^{0}\left(\pi_{\mathrm{Vx}_{\mathrm{T}} \mathrm{S}}^{0}\left(\pi_{\mathrm{V}}^{0}(\mathrm{x})\right) \cdot \pi_{\mathrm{Wx}_{\mathrm{T}} \mathrm{s}}^{0}\left(\pi_{\mathrm{W}}^{0}(\mathrm{y})\right)\right)=\left(\pi_{\mathrm{V}} \pi_{\mathrm{Vx}}^{\mathrm{T}} \mathrm{S}^{\gamma}\right)^{0}(\mathrm{x})$

- $\left(\pi_{W}{ }^{\pi} W_{x_{T}} S^{\gamma}\right)^{0}(y)=\left(\pi_{V} V_{V x_{T}}\right)^{0}(x) \cdot\left(\pi_{W}{ }^{\pi} V_{x_{T}}\right)^{0}(y)$
$\left.=\pi_{V x_{T}}{ }^{\left(\pi_{V}^{0}(x)\right.} \cdot \pi_{V I}^{0}(y)\right)$.
Theorem 3.6. Let G be a finite group, and $F: \hat{G} \rightarrow A M$ be an additive contravariant functor. Then $\left.A_{F}=\left(A_{F}^{*}, A_{F}\right)^{*}\right)$ is a Green-functor.

Proof. We must verify the axioms $2.6(\mathrm{a}),(\mathrm{b})$, and $2.7(\mathrm{a})$, (b), (c).

Axiom 2.6(a). Let

be a pullback diagram in \hat{G}. We must show that $\phi_{2}{ }^{\dagger}{ }_{1}^{*}=\psi_{2}^{*}{ }_{1} *:$ $A_{F}\left(X_{1}\right) \rightarrow A_{F}\left(X_{2}\right)$. Let $[s, a, x] \in A_{F}\left(X_{1}\right)$. Then
$\phi_{2 *} \phi_{1}^{\star}([S, \alpha, x])=\left[X_{2} x_{Y} S, \pi_{x_{2}}, \pi_{S}^{0}(x)\right]$, and ${ }_{2}^{*} \psi_{1 *}([S, \alpha, x])$
$=\left[X_{X_{1}} S, \psi_{2} \pi_{X}, \tilde{\pi}_{S}^{0}(x)\right]$, where the pullback diagrams
explain our notation. Define $y: X_{X_{1}} s \rightarrow X_{2} X_{Y} S$ by $\gamma(x, s)$
$=\left(\psi_{2}(\mathrm{x}), \mathrm{s}\right)$. Using the fact that $\mathrm{X} \cong \mathrm{X}_{1} \mathrm{X}_{\mathrm{Y}} \mathrm{X}_{2}$, it is easy to see that γ is an isomorphism of G-sets.

It is equally evident that $\psi_{2} \pi_{x}=\pi_{x_{2}}{ }^{\gamma}$. Since $\tilde{\pi}_{S}=\pi_{S} \gamma$, it follows that $\gamma^{0} \pi_{S}^{0}(x)=\tilde{\pi}_{S}^{0}(x)$. Thus $\gamma:\left(X x_{X_{1}} S, \psi_{2} \pi_{X}, \tilde{\pi}_{S}^{0}(x)\right) \rightarrow\left(X_{2} X_{Y} S, \pi_{X_{2}}, \pi_{S}^{0}(x)\right)$ is an isomorphism. Thus, $\phi_{2}{ }^{*} \phi_{1}^{*}=\psi_{2}^{*} \psi_{1 *}$.

Axiom $2.6(b)$. Let S_{1}, S_{2} be $G-s e t s$, and let K_{i} : $s_{i} \rightarrow S_{1} \dot{U} S_{2}$ be the inclusion maps. We show that $K_{1 *} \times K_{2 *}$: $A_{F}\left(S_{1} \dot{U} S_{2}\right) \rightarrow A_{F}\left(S_{1}\right) \times A_{F}\left(S_{2}\right)$ is an isomorphism by exhibiting its inverse. We define $\beta: A_{F}\left(S_{1}\right) \times A_{F}\left(S_{2}\right) \rightarrow A_{F}\left(S_{1} \cup S_{2}\right)$ by $\beta\left(\left[T_{1}, \phi_{1}, X_{1}\right],\left[T_{2}, \phi_{2}, X_{2}\right]\right)=\left[T_{1}\right.$ U T_{2}, ϕ_{1} U $\left.\phi_{2}, X_{1} \dot{+} X_{2}\right]$ (check that this is well defined). It suffices to show that $3 \circ\left(K_{1 *} \times K_{2 *}\right)$ and $\left(K_{1 *} \times K_{2 *}\right) \circ \beta$ are both the identity (then 3 is a ring isomorphism). First let [T, $0, x]$
$\in A_{F}\left(S_{1}\right.$ U $\left.S_{2}\right)$. Then $\beta \circ\left(K_{1 *} \times K_{2 *}\right)([T, 0, x])$ $\left.=\beta\left(T x_{S_{1}} \cup S_{2} S_{1},{ }^{\pi} S_{1}, \pi_{T}^{0}(x)\right],\left[T x_{S_{1}} \dot{U} S_{2} S_{2}, \pi_{S_{2}}, \tilde{\pi}_{T}^{0}(x)\right]\right)$
$=\left[\left(T x_{S_{1}} \dot{U} S_{2} S_{1}\right) \dot{U}\left(T x_{S_{1}} \dot{U} S_{2} S_{2}\right), \pi_{S_{1}} \dot{U} \pi_{S_{2}}, \pi_{T}^{0}(x) \dot{\pi_{T}}(x)\right]$, where the following pullback diagrams explain our notation.

$\tilde{\pi}_{\mathrm{T}}^{\mathrm{T}}{ }_{\mathrm{S}} \mathrm{S}_{1} \mathrm{US}_{2} \mathrm{~S}_{2} \xrightarrow{\mathrm{~T}_{S_{2}}}{ }_{\downarrow}^{\mathrm{S}_{2}}$
$T \longrightarrow S_{1}$ U S_{2}

Define $\gamma:\left(T x_{S_{1}} \cup S_{2} S_{1}\right) \dot{U}\left(T x_{S_{1}} \dot{U} S_{2} S_{2}\right) \rightarrow T$ to be $\gamma=\pi_{T} \dot{U} \tilde{\pi}_{T}$. Then γ is a G-isomorphism such that $\phi \gamma=\pi_{S_{1}}$ Ur $\pi_{S_{2}}$. We claim that $\gamma^{0}(x)=\pi_{T}^{0}(x)+\pi_{T}^{0}(x)$. Let $\lambda_{i}: T x_{S_{1}} U S_{2} S_{i}$ $\rightarrow\left(T x_{S_{1}} \cup S_{2} S_{1}\right) \dot{U}\left(T X_{S_{1}} \cup S_{2} S_{2}\right)$ be inclusion. By the additivity of F, and symmetry, it suffices to show that $\lambda_{1}^{0} \gamma^{0}(x)$ $=\pi_{T}^{0}(x)$. This equation follows since $\gamma_{1}=\pi_{T}$. Thus $\gamma:\left(\left(T x_{S_{1}} \cup S_{2} S_{1}\right)\right.$ Ur $\left.\left(T x_{S_{1}} \cup S_{2} S_{2}\right), \pi_{S_{1}} \dot{U} \pi_{S_{2}}, \pi_{T}^{0}(x)+\pi_{T}^{0}(x)\right)$ $\rightarrow(T, \phi, x)$ is an isomorphism, so that $\beta \circ\left(K_{1 *} \times K_{2 *}\right)$ is the identity on $A_{F}\left(S_{1}\right.$ if $\left.S_{2}\right)$.

Conversely, let $\left(\left[T_{1}, \phi_{1}, x_{1}\right],\left[T_{2}, \phi_{2}, x_{2}\right]\right) \in A_{F}\left(S_{1}\right)$
$\times A_{F}\left(S_{2}\right)$. Then as easy computation shows $\left(K_{1} * \times K_{2 *}\right)$ $\circ \beta\left(\left[T_{1}, \phi_{1}, x_{1}\right]\left[T_{2}, \phi_{2}, x_{2}\right]\right)=\left(\left[\left(T_{1} \cup T_{2}\right) x_{S_{1}} \cup S_{2} S_{1}, \pi_{S_{1}}\right.\right.$, $\left.\left.\pi_{T_{1}}^{0} \cup T_{2}\left(X_{1}+X_{2}\right)\right],\left[\left(T_{1} \cup T_{2}\right) x_{S_{1}} \cup S_{2} S_{2} \cdot \pi S_{2},{ }^{\sim} T_{1} \cup T_{2}\left(X_{1}+X_{2}\right)\right]\right)$
(the reader can deduce our notation). By symmetry, it suffices to show that $\left(T_{1}, \phi_{1}, x_{1}\right) \cong\left(\left(T_{1}\right.\right.$ ن $\left.T_{2}\right) x_{S_{1}} \cup S_{2} S_{1}, \pi S_{1}$,
$\left.\pi_{T_{1} \dot{U} T_{2}}^{0}\left(X_{1} \dot{+} x_{2}\right)\right)$. Define $\gamma:\left(T_{1} \dot{U} T_{2}\right) x_{S_{1}} \dot{U} s_{2} S_{1} \rightarrow T_{1}$ by $\gamma(t, s)=t$. Note that if $(t, s) \in\left(T_{1} \dot{\cup} T_{2}\right) x_{S_{1}} \dot{U} s_{2} S_{1}$, then $s=K_{1}(s)=\left(\phi_{1} \dot{U} \phi_{2}\right)(t) \in s_{1}$. Thus $t \in T_{1}$ and $s=\phi_{1}(t)$. It follows that γ is an isomorphism. Plainly, $\phi_{1} \gamma=\pi_{S_{1}}$, so finally we must check that $\gamma^{0}\left(X_{1}\right)=\pi_{T_{1}}^{0} \dot{U}_{2}\left(X_{1} \dot{+} X_{2}\right)$. If $\lambda: T_{1} \rightarrow T_{1} \dot{U} T_{2}$ is inclusion, then $\pi_{T_{1} \dot{U} T_{2}}=\lambda \gamma$. Thus $\pi_{T_{1} \dot{U} T_{2}}^{0}\left(x_{1} \dot{+} x_{2}\right)=\gamma^{0} \lambda^{0}\left(x_{1} \dot{+} x_{2}\right)=\gamma^{0}\left(x_{1}\right)$. Therefore, γ is the required isomorphism.

Axiom 2.7(a). Let S be a G-set, and let G / G denote the one-point G-set. Define $I_{S}: S \rightarrow S$ in the only possible way, and let l_{S} be the unit of $F(S)$. Then it is easy to check that $\left[S, I_{S}, 1_{S}\right]=1_{A_{F}}(S)$.

Axiom 2.7(b). This is shown in 3.5.
Axiom 2.7(c). Let $\alpha: S \rightarrow T$ be a G-map. Let $[\mathrm{V}, \phi, \mathrm{x}]$
$\in A_{F}(S)$ and $[W, \psi, Y] \in A_{F}(T)$. We must show that $\alpha^{*}\left(\alpha_{*}([w, \psi, y]) \cdot[\mathrm{V}, \phi, \mathrm{x}]\right)=[\mathrm{w}, \psi, \mathrm{y}] \cdot \alpha^{*}([\mathrm{~V}, \phi, \mathrm{x}])$. After applying the definitions of α^{*} and α_{*} it is enough to show that $\left(\left(W_{T}{ }_{T}\right) x_{S} V, \alpha \circ\left({ }_{S} s^{x_{S}}{ }^{\phi}\right),\left(\pi_{W x_{T}}^{0} S^{\pi_{V}}(y)\right) \cdot\left(\pi_{V}^{0}(x)\right)\right)$ $\cong\left(W x_{T}{ }^{V}, \psi \mathrm{w}_{\mathrm{T}}(\alpha \phi), \pi_{\mathrm{W}}^{0}(\mathrm{y}) \cdot \tilde{\pi}_{\mathrm{V}}^{0}(\mathrm{x})\right)$, where the following pullback diagrams explain our notation.

Define $\gamma:\left(W x_{T} S\right) x_{S} V \rightarrow W x_{T} V$ by $\gamma((w, s), v)=(w, v)$. Then γ is a G-isomorphism such that $\alpha \circ\left(\pi_{S} X_{S} \phi\right)=\left(\psi X_{T}(\alpha \phi)\right) \circ \gamma$ (as one checks). Moreover, since $\pi_{W}{ }^{\pi} W_{X_{T} S}=\tilde{\pi}_{W} \gamma$ and $\pi_{V}=\tilde{\pi}_{V} \gamma$, it follows that $\gamma^{0}\left(\tilde{\pi}_{W}^{0}(y) \cdot \tilde{\pi}_{V}^{0}(x)\right)=\left(\tilde{\pi}_{W}^{\gamma}\right)^{0}(x)$ - $\left(\tilde{\pi}_{V} \gamma\right)^{0}(y)=\left(\pi_{W x_{T}}^{0} S_{W}^{0}(x)\right) \cdot\left(\pi_{V}^{0}(y)\right)$. Thus γ gives us the required isomorphism.

A Basis for $A_{F}(G)$

We introduce some notational conveniences. If $H \leq G$, then G / H denotes the transitive $G-s e t$ of left cosets modulo H. We will denote $A_{F}(G / H)$ by $A_{F}(H)$. In particular, if $H=G$, then for any non-empty G-set T, there is exactly one G-map $\quad \eta_{T}: T \rightarrow G / G$. Thus we abbreviate the category $(G, G / G, F)$ to (G, F), the element $\left[T, \eta_{T}, x\right]$ of $A_{F}(G)$ to $[T, x]$, and the object $\left(T, \eta_{T}, x\right)$ of (G, F) to (T, x). Then isomorphism in (G, F) of objects (T, X) and (V, Y) is equivalent with the existence of a G-isomorphism $B: T \rightarrow V$ with $\beta^{0}(y)=x$.

$$
\text { For any G-set } \because, \text { let } W_{T}=A u t_{G}(T) \text {. Especially, }
$$

if $a \in P$, we shall abbreviate $W_{S_{a}}$ to $W_{a}=A u t_{G}\left(S_{a}\right)$.

We use W_{T} to define an equivalence relation \sim_{T} on $F(T)$, namely, we say $x_{T} y$ if and only if there exists $\alpha \in W_{T}$ with $\alpha^{0}(x)=y, x, y \in F(T)$. For $a \in P$ we shall let $x_{a} y$ denote $x_{S_{a}} y$. The following lemma is a direct consequence of these definitions and Corollary 3.4.

Lemma 3.7. Let T be a G-set, and let $x, y \in F(T)$. Then $x_{T} T^{y}$ if and only if $[T, X]=[T, y]$ in $A_{F}(G)$.

Let $\underline{\gamma}=\underline{\gamma}(G)=\left\{S_{a}: a \in P\right\}$. By 2.1(a), $\underline{\gamma}$ is a complete set of representatives of isomorphism classes of transitive G-sets. For each $a \in P$, choose a set $R_{a} \subseteq F\left(S_{a}\right)$ of equivalence class representatives under \sim_{a}. The following proposition may be viewed as the uniqueness statement in wedderburn's theorem.

Proposition 3.8. Fix $a \in P$ and suppose that $\sum_{i=1}^{m}\left[S_{a}, x_{i}\right]$ $=\sum_{i=1}^{n}\left[S_{a}, y_{i}\right]$ for some $x_{i}, y_{i} \in R_{a}$. Then $m=n$, and there is a permutation π of $\{1, \ldots, n\}$ such that $x_{i}=y_{\pi(i)}$ all i.

Proof. By 3.4, $\left(\underset{i=1}{m} S_{a}, x_{1} \dot{m} \ldots+x_{m}\right) \xlongequal{\cong}\left({\underset{i}{i=1}}_{n}^{(n} S_{a}, y_{1} \dot{+} \ldots\right.$ $\dot{+} y_{n}$, in particular, $\bigcup_{i=1}^{m} S_{a} \cong \bigcup_{i=1}^{n} S_{a}, \quad$ so $m=n$. For notational ease, we set $S_{a}^{i}=S_{a}, 1 \leq i \leq n$. Choose an isomorphism $a: \bigcup_{i=1}^{n} S_{a}^{i} \rightarrow{\underset{i}{i=1}}_{n}^{n} S_{a}^{i}$ with $\alpha^{0}\left(y_{1}+\ldots+y_{n}\right)=x_{1}$ $\dot{+} \ldots \dot{+} x_{n}$. For each i, $a\left(S_{a}^{i}\right)$ is a transitive subset of
$\bigcup_{j=1}^{n} S_{a}^{j}$, so there is an index $\pi(i)$ with $\alpha\left(S_{a}^{i}\right)=S_{a}^{\pi(i)}$. This defines π. Since α is an isomorphism, π is a permutation of $\{1, \ldots, n\}$. For each i, let $K_{i}: S_{a}^{i} \rightarrow{\underset{j}{j}=1}_{n}^{s} S_{a}^{j}$ be inclusion, and let $\alpha_{i}=\left.\alpha\right|_{S_{a}^{i}}: s_{a}^{i} \rightarrow s_{a}^{\pi(i)}$. Plainly, αK_{i}
$=K_{\pi(i)} \alpha_{i}$. Thus $\alpha_{i}^{0}\left(y_{\pi(i)}\right)=\alpha_{i}^{0} K_{\pi(i)}^{0}\left(y_{1} \dot{+} \ldots+y_{n}\right)$ $=k_{i}^{0} 0^{0}\left(y_{1}+\ldots+y_{n}\right)=k_{i}^{0}\left(x_{1}+\ldots+x_{n}\right)=x_{i}$. since $\alpha_{i}: s_{a}^{i} \rightarrow s_{a}^{\pi(i)}$ is an isomorphism, and $s_{a}^{i}=s_{a}^{\pi(i)}=s_{a}$, it follows from the fact that $x_{i}, y_{\pi(i)} \in R_{a}$ that $x_{i}=y_{\pi(i)}$ all i.

Theorem 3.9. Let $F: G \rightarrow A M$ be an additive contravariant functor. Define $B_{F}=\left\{\left[S_{a}, x\right]: a \in P(G), x \in R_{a}\right\}$. Then B_{F} is a \mathbf{Z}-basis of $A_{F}(G)$.
Proof. Let $[T, Y] \in A_{F}(G)$. Write $T=\bigcup_{i=1}^{n} T_{i}$, with each T_{i} a transitive G-set. By additivity of F, we may find elements $y_{i} \in F\left(T_{i}\right)$ with $[T, Y]=\sum_{i=1}^{n}\left[T_{i}, Y_{i}\right]$. For each i, choose $a_{i} \in P$ and an isomorphism $a_{i}: S_{a_{i}} \rightarrow T_{i}$. Then, for each i, there is a unique $x_{i} \in R_{a_{i}}$ with $\alpha_{i}^{0}\left(y_{i}\right){ }_{a_{i}} x_{i}$. Thus $\left(T_{i}, y_{i}\right) \cong\left(S_{a_{i}}, a_{i}^{0}\left(y_{i}\right)\right) \cong\left(S_{a_{i}}, x_{i}\right)$, so that $[T, y]$ $=\sum_{i=1}^{n}\left[S_{a}, x_{i}\right]$, and B_{F} spars. For independence, first suppose there is a dependence relation $\sum_{i=1}^{n} c_{i}\left[S_{a}, x_{i}\right]=0$ for some fixed $a \in P$, where
$x_{i} \neq x_{j}$ if $i \neq j$, and c_{i} is non-zero, all i. Then by Proposition 3.8, the equality $\sum_{c_{i}>0} c_{i}\left[s_{a}, x_{i}\right]=\sum_{c_{j}<0}\left(-c_{j}\right)\left[S_{a}, x_{j}\right]$ yields $x_{i}=x_{j}$ for some $i \neq j$, a contradiction. In general, if there is a dependence relation $\left.\sum_{a \in P} \sum_{x \in R_{a}} c_{a, x}{ }^{[S} S_{a}, x\right]$ $=0$, then since the S_{a} are pairwise non-isomorphic, Corrollary 3.4 yields $\sum_{x \in R_{a}} c_{a, x}\left[S_{a}, x\right]=0$, for each $a \in P$. By the above argument, $c_{a, x}=0$ for all $a \in P, x \in R_{a}$.

Finally, let us consider the case when the relation \sim is trivial.

Definition 3.10. Let T be a G-set. An element $x \in F(T)$ is normal if given any $\alpha \in W_{T}=A u t_{G}(T)$, we have $\alpha^{0}(x)=x$. Let $F_{N}(T)$ denote the set of all normal elements of $F(T)$. A-set T is normal over F if $F_{N}(T)=F(T)$. If every G-set T is normal over F then F is called normal.

We collect some facts about normality.
Proposition 3.11. Let $F: \hat{G} \rightarrow A M$ be an additive contravariant functor, and let T be any $G-s e t$.
(a) $F_{N}(T)$ is a subgroup of $F(T)$. In fact, if we
let $W_{T}^{0}=\left\{\alpha^{0}: \alpha \in W_{T}\right\} \subseteq \operatorname{Aut}(F(T))$, then $F_{N}(T)$ is the fixed subgroup of $F(T)$ under the action of W_{T}^{0}.
(b) If $\eta_{T}: T \rightarrow G / G$ denotes the canonical map, then image $\quad\left(n_{T}^{0}\right) \subseteq F_{N}(T)$.
(c) If S_{a} is normal over F, then $R_{a}=F\left(S_{a}\right)$. In particular, if F is normal, then $B_{F}=\left\{\left[S_{a}, x\right]: a \in P\right.$, $\left.x \in F\left(S_{a}\right)\right\}$.

The proofs of these statements are trivialities. Under the assumption of normality for the functor F, the Green-functor A_{F} is especially computable. Indeed, its theory resembles that of the Burnside ring functor A. It will be the topic of Chapter 6 to describe some of these connections.

CHAPTER 4

FUNCTORIAL PROPERTIES

Fixed throughout this chapter is a finite group G. We shall denote by $A M^{G}$ the category of additive contravariant functors $F: \hat{G} \rightarrow A M$, with natural transformations as morphisms, and by GF^{G} the category of Green-functors $M: \hat{G} \rightarrow A B$. Given $M \in G F^{G}$, it follows that $M_{*} \in A M^{G}$, where for a G-set $S, M_{*}(S)$ is the multiplicative monoid of $M(S)$. By axioms $2.6(b), 2.7(a)$ and $2.7(b)$, we obtain the forgetful functor $U: G F^{G} \rightarrow A M^{G}$ given by $U(M)=M_{*}$. By general existence theorems, a left adjoint must exist for U. The purpose of our present discussion is to show that the correspondence $F \rightarrow A_{F}$, from $A M^{G}$ to $G F^{G}$, defines such an adjoint. We must first establish that this correspondence defines a functor.

Proposition 4.1. Let $F_{1}, F_{2} \in A M^{G}$, and let $\gamma: F_{1} \rightarrow F_{2}$ be a natural transformation. Then there is an induced natural transformation of Green-functors $\hat{\gamma}: A_{F_{1}} \rightarrow A_{F_{2}}$, such that for all $S \in \hat{G},[T, \phi, x] \in A_{F_{I}}(S), \hat{\gamma}_{S}([T, \phi, x])$ $=\left[T, \phi, Y_{T}(x)\right] \in A_{F_{2}}(S)$.

Proof. Let $S \in \hat{G}$. Define $\lambda_{S}:\left(G, S, F_{1}\right) \rightarrow A_{F_{2}}(S)$ by $\lambda_{S}(T, \phi, x)=\left[T, \phi, \gamma_{T}(x)\right]$. We must first check that λ_{S} respects isomorphism, \mathcal{C}, and x_{S}. Let $\left(\mathrm{T}_{\mathrm{i}}, \phi_{i}, \mathrm{x}_{\mathrm{i}}\right)$ $\in\left(G, S, F_{1}\right), \quad i=1,2$.
i) Suppose $\alpha:\left(T_{1}, \phi_{1}, x_{1}\right) \rightarrow\left(T_{2}, \phi_{2}, x_{2}\right)$ is an isomorphism, so that $F_{1}(\alpha)\left(x_{2}\right)=x_{1}$ and $\phi_{1}=\phi_{2}^{\alpha}$. since γ is a natural transformation, $F_{2}(\alpha) \gamma_{T_{2}}\left(x_{2}\right)=\gamma_{T_{1}} F_{1}(\alpha)\left(x_{2}\right)$
$=\gamma_{\mathrm{T}_{1}}\left(\mathrm{x}_{1}\right)$. It follows that $\alpha:\left(\mathrm{T}_{1}, \phi_{1}, \gamma_{\mathrm{T}_{1}}\left(\mathrm{x}_{1}\right)\right)$
$\rightarrow\left(T_{2}, \phi_{2}, \gamma_{T_{2}}\left(X_{2}\right)\right)$ is an isomorphism in (G, S, F_{2}). Thus, by Corollary $3.4, \lambda_{S}\left(T_{1}, \phi_{1}, x_{1}\right)=\left[T_{1}, \phi_{1}, \gamma_{T_{1}}\left(x_{1}\right)\right]$
$=\left[\mathrm{T}_{2}, \phi_{2}, \gamma_{\mathrm{T}_{2}}\left(\mathrm{x}_{2}\right)\right]=\lambda_{\mathrm{S}}\left(\mathrm{T}_{2}, \phi_{2}, \mathrm{x}_{2}\right)$.
ii) λ_{S} respects θ. Need $\lambda_{S}\left(T_{1}, \phi_{1}, x_{1}\right)$ $+\lambda_{S}\left(T_{2}, \phi_{2}, x_{2}\right)=\lambda_{S}\left(\left(T_{1}, \phi_{1}, x_{1}\right) \oplus\left(T_{2}, \phi_{2}, x_{2}\right)\right)$, that is, $\left[T_{1} \dot{U} T_{2}, \phi_{1} \dot{U} \phi_{2}, \gamma_{T_{1}}\left(x_{1}\right) \dot{+} \gamma_{T_{2}}\left(x_{2}\right)\right]=\left[T_{1} \dot{U} T_{2}, \phi_{1} \dot{U} \phi_{2}\right.$, $\left.\gamma_{T_{1}} \dot{\cup} T_{2}\left(x_{1} \dot{+} x_{2}\right)\right]$. It suffices to show that $\gamma_{T_{1}}\left(x_{1}\right) \dot{+} \gamma_{T_{2}}\left(x_{2}\right)$ $=\gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right)$ in $F_{2}\left(T_{1} \dot{U} T_{2}\right)$. By naturality, $\gamma_{T_{i}} F_{1}\left(K_{i}\right)=F_{2}\left(K_{i}\right) \gamma_{T_{1}} \dot{U} T_{2}: F_{1}\left(T_{1} \dot{U} T_{2}\right) \rightarrow F_{2}\left(T_{i}\right), \quad i=1,2$. Thus, $\quad F_{2}\left(K_{i}\right) \gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right)=\gamma_{T_{i}} F_{I}\left(K_{i}\right)\left(x_{1} \dot{+} x_{2}\right)=\gamma_{T_{i}}\left(x_{i}\right)$. By additivity of F_{2}, this shows $\gamma_{T_{1}}\left(x_{1}\right) \dot{+} \gamma_{T_{2}}\left(x_{2}\right)$ $=\gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right)$, as needed.
iii) λ_{S} respects x_{S}. Computing, as above, we must show that $\left[T_{1} x_{S} T_{2}, \phi x_{S}{ }^{\phi} 2^{\prime \gamma} T_{1} x_{S} T_{2}\left(F_{1}\left(\pi_{1}\right)\left(x_{1}\right) \cdot F_{1}\left(\pi_{1}\right)\left(x_{2}\right)\right)\right]$
$=\left[T_{1} x_{S} T_{2}, \phi_{1} x_{S} \phi_{2}, F_{2}\left(\pi_{1}\right)\left(\gamma_{T_{1}}\left(x_{1}\right)\right) \cdot F_{2}\left(\gamma_{2}\right)\left(\pi_{T_{2}}\left(x_{2}\right)\right)\right]$, so it
suffices to show $\gamma_{T_{1}} X_{S} T_{2}\left(F_{1}\left(\pi_{1}\right)\left(x_{1}\right) \cdot F_{2}\left(\pi_{2}\right)\left(x_{2}\right)\right)$
$=F_{2}\left(\pi_{1}\right)\left(\gamma_{T_{1}}\left(x_{1}\right)\right) \cdot F_{2}\left(\pi_{2}\right)\left(\gamma_{T_{2}}\left(x_{2}\right)\right)$ in $F_{2}\left(T_{1} x_{S} T_{2}\right)$. This
follows immediately, since by naturality of γ,
$\gamma_{T_{1}} x_{S} T_{2} F_{I}\left(\pi_{i}\right)=F_{2}\left(\pi_{i}\right) \gamma_{T_{i}}, \quad i=1,2$.
It follows that there is an induced ring homomorphism
$\hat{\gamma}_{S}: A_{F_{1}}(S) \rightarrow A_{F_{2}}(S)$ satisfying $\hat{\gamma}_{S}([T, \phi, x])=\left[T, \phi, \gamma_{T}(x)\right]$.
We now show $\hat{\gamma}=\left\{\hat{Y}_{S}: S \in \hat{G}\right\}$ is a natural transformation of Green-functors $A_{F_{1}} \rightarrow A_{F_{2}}$. Let $\alpha: S \rightarrow T$ be a G-map. We must show that $\hat{\gamma}_{T} A_{F_{1}}^{*}(\alpha)=A_{F_{2}}^{*}(\alpha) \hat{\gamma}_{S}: A_{F_{1}}(S) \rightarrow A_{F_{2}}(T)$, and that $\hat{\gamma}_{S^{A} F_{1 *}}(a)=A_{F_{2 *}}(\alpha) \hat{\gamma}_{T}: A_{F_{I}}(T) \rightarrow A_{F_{2}}(S)$. If $[V, \phi, x] \in A_{F_{1}}(S)$, then $\hat{i}_{T} A_{F_{1}}^{*}(\alpha)([V, \phi, x])$
$=\hat{\gamma}_{T}([\mathrm{~V}, \alpha \phi, \mathrm{x}])=\left[\mathrm{V}, \alpha \phi, \gamma_{\mathrm{V}}(\mathrm{x})\right]=\mathrm{A}_{\mathrm{F}_{2}}(\alpha)\left(\left[\mathrm{V}, \phi, \gamma_{\mathrm{V}}(\mathrm{x})\right]\right)$
$=A_{F_{2}}^{*}(a) \hat{\gamma}_{S}([V, \phi, x])$.
Conversely, if $[W, \psi, Y] \in A_{F_{1}}(T)$, then
$\hat{\gamma}_{S} A_{F_{1}}(\alpha)([W, \psi, y])=\hat{\gamma}_{S}\left(\left[W x_{T} S, \pi_{S}, F_{I}\left(\pi_{W}\right)(y)\right]\right)=\left[W x_{T} S, \pi_{S}\right.$,
$\left.\gamma_{W x_{T}} S_{i}{ }_{I}\left(\pi_{W}\right)(y)\right]$, whereas, $\quad A_{F_{2}} *(a) \hat{\gamma}_{T}([W, \psi, y])$
$=A_{F_{2}}(\alpha)\left(\left[W, \psi, \gamma_{W}(y)\right]\right)=\left[W x_{T} S, \pi_{S}, F_{2}\left(\pi_{W}\right) \gamma_{W}(y)\right]$. By naturality
of $\gamma, \quad \gamma_{W x_{T}} S^{F}{ }_{1}\left(\pi_{W}\right)(y)=F_{2}\left(\pi_{W}\right) \gamma_{W}(y)$.
Corollary 4.2. The correspondences $F \rightarrow A_{F}, \gamma \rightarrow \hat{\gamma}$ define a covariant functor from $A M^{G}$ to $G F^{G}$.

Conversely, we have the following.
Proposition 4.3. Let $F \in A M^{G}$, and $M \in G F^{G}$. Given any natural transformation $\gamma: F \rightarrow U(M)$, the prescripition $\tilde{\gamma}_{S}([T, \phi, X])=M *(\phi) \gamma_{T}(x): A_{F}(S) \rightarrow M(S)$ defines a natural transformation of Green-functors $\tilde{\gamma}: A_{F} \rightarrow M$.

Proof. Fix $S \in \hat{G}$. Define $\lambda_{S}:(G, S, F) \rightarrow M(S)$ by $\lambda_{S}(T, \phi, x)=\phi^{*} \gamma_{T}(x)$, where $\phi^{*}=M^{*}(\phi): M(T) \rightarrow M(S)$. As usual, let $\left(T_{i}, \phi_{i}, x_{i}\right) \in(G, S, F), i=1,2$.
i) λ_{S} respects isomorphism. Suppose $\alpha:\left(T_{1}, \phi_{1}, x_{1}\right)$
$\rightarrow\left(T_{2}, \phi_{2}, x_{2}\right)$ is an isomorphism, so that $\alpha^{0}\left(x_{2}\right)=x_{1}$ and $\phi_{1}=\phi_{2}$. By Frobenius reciprocity (2.7(c)), $\lambda_{S}\left(T_{1}, \phi_{1}, x_{1}\right)$ $=\phi_{1}^{*} \gamma_{\mathrm{T}_{1}}\left(\mathrm{x}_{1}\right)=\phi_{2}^{\star \alpha}{ }^{*} \gamma_{\mathrm{T}_{1}}\left(\alpha^{0}\left(\mathrm{x}_{2}\right)\right)=\phi_{2}^{*} \alpha{ }^{*} \alpha_{\star} \gamma_{\mathrm{T}_{2}}\left(\mathrm{x}_{2}\right)=\phi_{2}^{\star}\left(\gamma_{\mathrm{T}_{2}}\left(\mathrm{x}_{2}\right)\right.$ - $\left.\alpha^{*}\left(I_{M\left(T_{1}\right)}\right)\right)=\phi_{2}^{*} \gamma_{T_{2}}\left(X_{2}\right)=\lambda_{S}\left(T_{2}, \phi_{2}, x_{2}\right)$.
ii) λ_{S} is additive. By Frobenius reciprocity, naturality of γ, and Proposition 2.10, we have

$$
\begin{aligned}
& \lambda_{S}\left(T_{1}, \phi_{1}, x_{1}\right)+\lambda_{S}\left(T_{2}, \phi_{2}, x_{2}\right)=\phi_{1}^{*} \gamma_{T_{1}}\left(x_{1}\right)+\phi_{2}^{*} \gamma_{T_{2}}\left(x_{2}\right) \\
& =\left(\phi_{1} \dot{U} \phi_{2} \circ K_{1}\right) * \gamma_{T_{1}}\left(K_{1}^{0}\left(x_{1} \dot{+} x_{2}\right)\right) \\
& +\left(\phi_{1} \dot{U} \phi_{2} \circ K_{2}\right) * \gamma_{T_{2}}\left(K_{2}^{0}\left(x_{1} \dot{+} x_{2}\right)\right) \\
& =\left(\phi_{1} \dot{U} \phi_{2}\right) * K_{1}^{*} K_{1} * \gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right) \\
& +\left(\phi_{1} \dot{U} \phi_{2}\right) * K_{2}^{\star} K_{2} * \gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\phi_{1} \dot{U} \phi_{2}\right) *\left(\gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right) \cdot K_{1}^{*}\left(I_{M\left(T_{1}\right)}\right)\right) \\
& +\left(\phi_{1} \dot{U} \phi_{2}\right) *\left(\gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right) \cdot K_{2}^{*}\left(I_{M\left(T_{2}\right)}\right)\right) \\
& =\left(\phi_{1} \dot{U} \phi_{2}\right) *\left(\gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right)\left(\left(K_{1}^{*} K_{1} *+K_{2}^{*} K_{2 *}\right)\left(I_{M\left(T_{1}\right.} \dot{U} T_{2}\right)\right)\right) \\
& =\left(\phi_{1} \dot{U} \phi_{2}\right) * \gamma_{T_{1}} \dot{U} T_{2}\left(x_{1} \dot{+} x_{2}\right)=\lambda_{S}\left(\left(T_{1}, \phi_{1}, x_{1}\right) \Theta\left(T_{2}, \phi_{2}, x_{2}\right)\right) .
\end{aligned}
$$

iii) λ_{S} respects x_{S}. Using Frobenius reciprocity, and $2.6(a)$ we have
$\lambda_{S}\left(\left(T_{1}, \phi_{1}, x_{1}\right) x_{S}\left(T_{2}, \phi_{2}, x_{2}\right)\right)=\lambda_{S}\left(\left(T_{1} x_{S} T_{2}, \phi_{1} x_{S} \phi_{2}, \pi_{1}^{0}\left(x_{1}\right) \cdot \pi_{2}^{0}\left(x_{2}\right)\right)\right)$
$=\left(\phi_{1} x_{S} \phi_{2}\right) * \gamma_{T_{1}} x_{S} T_{2}\left(\pi_{1}^{0}\left(x_{1}\right) \cdot \pi_{2}^{0}\left(x_{2}\right)\right)$
$=\left(\phi_{1} \mathrm{x}_{S} \phi_{2}\right) *\left(\gamma_{\mathrm{T}_{1}} \mathrm{x}_{\mathrm{S}} \mathrm{T}_{2}\left(\pi_{1}^{0}\left(\mathrm{x}_{1}\right)\right) \cdot \gamma_{\mathrm{T}_{1}} \mathrm{x}_{\mathrm{S}} \mathrm{T}_{2}\left(\pi_{2}^{0}\left(\mathrm{x}_{2}\right)\right)\right)$
$=\phi_{1}^{*} \pi_{1}^{*}\left(\pi_{1} * \gamma_{\mathrm{T}_{1}}\left(\mathrm{x}_{1}\right) \cdot \pi_{2} * \gamma_{\mathrm{T}_{2}}\left(\mathrm{x}_{2}\right)\right)=\phi_{1}^{*}\left(\gamma_{\mathrm{T}_{1}}\left(\mathrm{x}_{1}\right) \cdot \pi_{1}^{*} \pi_{2} * \gamma_{\mathrm{T}_{2}}\left(\mathrm{x}_{2}\right)\right)$
$=\phi_{1}^{\star}\left(\gamma_{\mathrm{T}_{1}}\left(\mathrm{x}_{1}\right) \cdot \phi_{1} \star^{\phi}{ }_{2}^{*} \mathrm{Y}_{\mathrm{T}_{2}}\left(\mathrm{x}_{2}\right)\right)=\phi_{2}^{*}{ }^{\gamma} \mathrm{T}_{2}\left(\mathrm{x}_{2}\right) \cdot \phi_{1}^{\star \gamma} \mathrm{Y}_{1}\left(\mathrm{x}_{1}\right)$
$=\lambda_{S}\left(T_{1}, \phi_{1}, x_{1}\right) \cdot \lambda_{S}\left(T_{2}, \phi_{2}, x_{2}\right)$.
It follows that λ_{S} induces a ring homomorphism $\tilde{\gamma}_{S}: A_{F}(S) \rightarrow M(S)$ satisfying $\tilde{Y}_{S}([T, \phi, x])=M^{*}(\phi) \gamma_{T}(x) . \quad$ To see that $\tilde{Y}=\left\{\tilde{\gamma}_{S}: S \in \hat{G}\right\}: A_{F} \rightarrow M$ is a natural transformation of Green-functors, let $a: S \rightarrow T$ be a G-map. We must show that $\tilde{\gamma}_{T} A_{F}^{*}(a)=M^{*}(a) \tilde{\gamma}_{S}: A_{F}(S) \rightarrow M(T)$, and that $\tilde{\gamma}_{S} A_{F *}(a)=M_{*}(a) \tilde{\gamma}_{T}: A_{F}(T) \rightarrow M(S)$.

If $[V, \phi, x] \in A_{F}(S)$, then $\tilde{\gamma}_{T} A_{F}^{*}(\alpha)([V, \phi, x])$
$=\tilde{\gamma}_{T}([V, \alpha \phi, x])=M^{*}(\alpha \phi) Y_{V}(x)=M^{*}(\alpha) M^{*}(\phi) \gamma_{V}(x)$
$=M^{*}(\alpha) \tilde{Y}_{S}([V, \phi, x])$.
Conversely, if $[W, \psi, Y] \in A_{F}(T)$, then
$\tilde{\gamma}_{S} A_{F *}(\alpha)([W, \psi, y])=\tilde{\gamma}_{S}\left(\left[W x_{T} S, \pi_{S}{ }^{\pi} W_{W}^{0}(y)\right]\right)=\pi_{S}^{*} \gamma_{W x_{T}}{ }^{\left(\pi_{W}^{0}(y)\right)}$
$=\pi_{S}^{*} \pi_{W} \gamma_{W}(y)=\alpha_{*} \phi^{*} \gamma_{W}(y)=M_{*}(a) \tilde{\gamma}_{T}([W, \psi, y])$, using 2.6(a).
We can now prove the main theorem of this chapter.
Theorem 4.4. The functor $F \rightarrow A_{F}$ from $A M^{G}$ to $G F^{G}$ is the left adjoint of the forgetful functor $U: G F^{G} \rightarrow A M^{G}$. Proof. Fix $F \in A M^{G}, M \in G F^{G}$. We must establish a natural bijection $\operatorname{Nat}\left(A_{F}, M\right) \leftrightarrow \operatorname{Nat}(F, U M)$. Define $\Phi: \operatorname{Nat}\left(A_{F}, M\right) \rightarrow \operatorname{Nat}(F, U M)$ by $\Phi(\gamma)_{S}(x)=\gamma_{S}\left(\left[S, I_{S}, x\right]\right)$, and $\Psi: \operatorname{Nat}(F, U M) \rightarrow \operatorname{Nat}\left(A_{F}, M\right)$ by $\Psi(\gamma)=\tilde{\gamma} \quad$ (which is well defined by 4.3). We now show that Φ and Ψ are inverse bijections. If $\gamma \in \operatorname{Nat}\left(A_{F}, M\right), S \in \hat{G}$, and $[T, \phi, x] \in A_{F}(S)$, then $(\Psi \Phi(\gamma))_{S}([T, \phi, x])=\Phi(\tilde{Y})_{S}([T, \phi, x])=M *(\phi) \Phi(\gamma)_{T}(x)$ $=M^{*}(\phi) \gamma_{T}\left(\left[T, I_{T}, x\right]\right)=\gamma_{S} A_{F}^{*}(\phi)\left(\left[T, I_{T}, x\right]\right)=\gamma_{S}([T, \phi, x])$. Hence $\Psi \Phi=1$.

If $\gamma \in \operatorname{Nat}(F, U M), \quad S \in \hat{G}$, and $x \in F(S)$, then
$(\phi \Psi(\gamma))_{S}(x)=\Psi(\gamma)_{S}\left(\left[S, I_{S}, x\right]\right)=\tilde{\gamma}_{S}\left(\left[S, I_{S}, x\right]\right)=M^{*}\left(I_{S}\right) \gamma_{S}(x)$ $=\gamma_{S}(x)$. Therefore $\dot{\phi}=1$. All that remains is to show naturality in F and M.

For the ' F ' variable, let $Y: F_{1} \rightarrow F_{2}$ be a natural transformation in $A M^{G}$, and let $\Psi_{i}: \operatorname{Nat}\left(F_{i}, U M\right) \rightarrow \operatorname{Nat}\left(A_{F_{i}}, M\right)$
be the function given above, $i=1,2$. We must show that for any $\theta \in \operatorname{Nat}\left(F_{2}, U M\right)$, we have $\Psi_{1}(\theta \gamma)=\Psi_{2}(\theta) \hat{\gamma}: A_{F_{1}} \rightarrow M$. Let $S \in \hat{G}$ and $[T, \phi, x] \in A_{F_{1}}(S)$. Then $\Psi_{1}\left(\theta_{\gamma}\right)_{S}([T, \phi, x])$ $=\left(\theta^{\tilde{\gamma}}\right)_{S}([T, \phi, x])=M *(\phi)(\theta \gamma)_{T}(x)=M *(\phi) \theta_{T} \gamma_{T}(x)$ $=\Psi_{2}(\theta)_{S}\left(\left[T, \phi, \gamma_{T}(x)\right]\right)=\psi_{2}(\theta)_{S} \hat{\gamma}_{S}([T, \phi, x])$.

For the ' M ' variable, fix $F \in A M^{G}$, and let $\gamma: M_{1} \rightarrow M_{2}$ be a natural transformation of Green-functors. We must show that for any $\theta \in \operatorname{Nat}\left(F, \mathrm{UM}_{1}\right)$, we have $\gamma_{1}{ }_{I}(\theta)$ $=\Psi_{2}(\gamma \theta): A_{F} \rightarrow M_{2}$. Let $S \in \hat{G}$ and $[T, \phi, x] \in A_{F}(S)$. Then $\left(\gamma \Psi_{1}(\theta)\right)_{S}([T, \phi, x])=\gamma_{S} \Psi_{I}(\theta)_{S}([T, \phi, X])=\gamma_{S}{ }_{S}([T, \phi, x])$ $=\gamma_{S} M_{1}^{*}(\phi) \theta_{T}(x)=M_{2}^{*}(\phi) \gamma_{T} \theta_{T}(x)=M_{2}^{*}(\phi)(\gamma \theta)_{T}(x)$ $=\Psi_{2}(\gamma \theta)_{S}([T, \phi, X])$.

Of course, if we let $M=A_{F}$, then adjointness impplies that the identity transformation $l_{A_{F}} \in \operatorname{Nat}\left(A_{F}, A_{F}\right)$ determines a universal arrow $\Phi\left(l_{A_{F}}\right): F \rightarrow U A_{F} \quad$ (MacLane 1971, pp. 77-84). Explicitly, we have $\Phi\left(I_{A_{F}}\right) S_{S}(x)=\left[S, I_{S}, x\right]$, all $S \in \hat{G}, x \in F(S)$, and the universality may be rephrased thus:

Corollary 4.5. Let $F \in A M^{G}$, and $\Phi\left(1_{A_{F}}\right): F \rightarrow U A_{F}$ be the natural transformation given above. Then, given any Greenfunctor M, and natural transformation $\gamma: F \rightarrow U M$, there is a natural transformation of Green-functors $\tilde{Y}: A_{F} \rightarrow M$ (given as in 4.3) such that $\gamma=\tilde{\gamma}\left(1_{A_{F}}\right)$.

Now the functor $\mathrm{I}: \hat{\mathrm{G}} \rightarrow \mathrm{AM}$, which associates to each G-set the monoid consisting of the identity alone, is both an initial and final object in $A M^{G}$. For each $F \in A M^{G}$, we let $a_{F}: I \rightarrow F$ and $\zeta_{F}: F \rightarrow I$ be the canonical natural transformations. Since $\zeta_{F} \alpha_{F}: I \rightarrow I$ is the identity, it follows that for each $G-$ set $S, \hat{a}_{F, S}: A_{I}(S) \rightarrow A_{F}(S)$ embeds $A_{I}(S)$ as a direct summand of $A_{F}(S)$, and that $\zeta_{F, S}: A_{F}(S) \rightarrow A_{I}(S)$ is surjective. In particular, the correspondence (T, ϕ) $\rightarrow[T, \phi, I]$ is an isomorphism $A(S) \rightarrow A_{I}(S)$, where $A(S)$ the Burnside ring of $G-s e t s$ over s (Dress 1971, pp. 54-61), and thus we may (and do) identify $A(S)$ with a subring of $A_{F}(S)$. Explicitly, $A(S) \cong$ image $\left(\hat{a}_{F, S}{ }^{\circ} \zeta_{F, S}\right) \subseteq A_{F}(S)$, any $F \in A M^{G}$. This observation will be useful later when we shall exploit the known properties of $A(S)$ in determining those of $A_{F}(S)$. For example, using the fact that \hat{a}_{F} and ζ_{F} are natural transformations of Green-functors, together with the fact that $A \cong A_{I}$ is an initial object in $G{ }^{G}$ (Dress 1971, p. 79), we obtain

Corollary 4.6. For any $F \in A M^{G}, A_{F}$ is an initial object in the category of Green-functors: $\hat{G} \rightarrow A B$.

Finally, we can compute the defect basis of A_{F}. Indeed, since the defect basis of the Burnside ring functor is the set of all subgroups of G, the following corollary is obtained.

Corollary 4.7. For any $F \in A M^{G}$, the defect basis of A_{F} is the set of all subgroups of G.

Proof. This follows directly from Dress (1971, p. 87), and the existence of $\hat{\alpha}_{F}$ and ζ_{F}.

CHAPTER 5

STRUCTURE THEORY

Fixed in this chapter are a finite group G, and a functor $F \in A M^{G}$. By Theorem 3.9, $A_{F}(G)$ is torsion free (as an abelian group), and thus it embeds faithfully in the tensor product $Q(X){ }_{\mathbf{Z}}{ }^{A} \mathrm{~F}(\mathrm{G})$. For simplicity we shall denote $Q X_{\mathbb{Z}} A_{F}(G)$ by $Q A_{F}(G)$, and consider its elements to be rational multiples of elements of $A_{F}(G)$. The principal aim of this chapter is the explicit computation of $\otimes A_{F}(G)$. In the next chapter we will use this characterization to examine the prime ideal structure of $A_{F}(G)$ when F is normal.

The Structure of $Q A_{F}(G)$

As discussed at the end of Chapter $4, A(G) \cong A_{I}(G)$, and we may identify $A(G)$ with the subring of $A_{F}(G)$ consisting of the elements $\{[S, 1]-[T, I]: S, T \in \hat{G}\}$. In particular, from Chapter 2, QA (G) has primitive idempotent $\left\{e_{a}: a \in P\right\}$, where $e_{a}=\sum_{b \in P} \lambda_{b, a}\left[S_{b}, l\right]$, and multiplication in $Q A(G)$ satisfies $\left[S_{a}, I\right]\left[S_{b}, 1\right]=\sum_{c \in P} V_{a, b, c}\left[S_{c}, l\right]$.

Lemma 5.1. Let $a, b \in P$ and $x \in F\left(S_{a}\right)$. Then for some $r \geq 0, \quad\left[S_{a}, x\right]\left[S_{b}, l\right]=v_{a, b, a}\left[S_{a}, x\right]+\sum_{j=1}^{r}\left[s_{a_{j}}, x_{j}\right]$, where $a_{j}<a$ and $x_{j} \in F\left(S_{a_{j}}\right), l \leq j \leq r$.

Proof. Set $n=V_{a, b, a}$ If $a \notin b$, then $n=0$ and the result is clear. Assume $a \leq b$, and set $s_{a}^{i}=S_{a}, l \leq i$ $\leq \mathrm{n}$ (possibly $\mathrm{n}=0$, but this gives no trouble). Then
 $j \leq r$ (by 2.2(c)). Let $a: s \rightarrow S_{a} \times S_{b}$ be this isomorphism, and let $K_{i}: S_{a}^{i} \rightarrow S, \ell_{j}: S_{a_{j}} \rightarrow S$ be the canonical injections. Let $\pi: S_{a} \times S_{b} \rightarrow S_{a}$ be the projection map. Since each composite $\pi \alpha K_{i}: S_{a}^{i}=S_{a} \rightarrow S_{a}$ is a G-map, it must be an automorphism, by the transitivity of S_{a}. By Lemma 3.7, [$\left.S_{a}, x\right]$ $=\left[S_{a}^{i},\left(\pi \alpha K_{i}\right)^{0}(x)\right] \quad 1 \leq i \leq n$. Set $x_{j}=\left(\pi \alpha \ell_{j}\right)^{0}(x) \in F\left(S_{a_{j}}\right)$, $1 \leq j \leq r$. By the additivity of F, and the above comments,

$$
\begin{aligned}
{\left[s_{a}, x\right]\left[s_{b}, 1\right] } & =\left[s_{a} \times s_{b}, \pi^{0}(x)\right] \\
& =\left[s_{,} \alpha^{0} \pi^{0}(x)\right] \\
& =\sum_{i=1}^{n}\left[s_{a}^{i}, k_{i}^{0} \alpha^{0} \pi(x)\right]+\sum_{j=1}^{r}\left[s_{a_{j}}, \ell_{j}^{0} \alpha_{\pi}^{0}(x)\right] \\
& =\sum_{i=1}^{n}\left[s_{a}, x\right]+\sum_{j=1}^{r}\left[s_{a_{j}}, x_{j}\right] \\
& =v_{a, b, a}\left[s_{a}, x\right]+\sum_{j=1}^{r}\left[s_{a}, x_{j}\right]
\end{aligned}
$$

We now generalize Proposition 2.4.

Proposition 5.2. Let $a, b \in P$ with $b \notin a$, and let $x \in F\left(S_{a}\right)$. Then $\left[S_{a}, x\right] e_{b}=0$.

Proof. The proof proceeds by induction on $a \in P$ with respect to \leq. If $a=1$, then by 5.1 and 2.3 ,

$$
\begin{aligned}
{\left[s_{1}, x\right] e_{b} } & =\sum_{c \in P} \lambda_{c, b}\left[s_{1}, x\right]\left[S_{c}, 1\right] \\
& =\left(\sum_{c \in P} \lambda_{c, b} V_{1, c, 1}\right)\left[s_{1}, x\right]=0
\end{aligned}
$$

Assume $\left[S_{c}, y\right] e_{b}=0$ whenever $c<a$ and $y \in F\left(S_{c}\right)$ (thus $b \notin c$, since $b \notin a)$. Then

$$
\begin{aligned}
{\left[s_{a}, x\right] e_{b} } & =\left[s_{a}, x\right] e_{b} \cdot e_{b} \\
& =\sum_{c \in P} \lambda_{c, b}\left[s_{a}, x\right]\left[s_{c}, 1\right] e_{b} \\
& =\sum_{c} \lambda_{c, b}\left(v_{a, c, a}\left[s_{a}, x\right]+\sum_{j=1}^{r_{c}}\left[s_{a}{ }_{j, c}, x_{j, c}\right]\right) e_{b} \\
& =\left(\sum_{c} \lambda_{c}, b{ }_{a, c}\right)\left[s_{a}, x\right] e_{b} \\
& +\sum_{c} \sum_{j=1}^{r} \lambda_{c, b}\left[s_{a}, c, x_{j, c}\right] e_{b}
\end{aligned}
$$

Since each $a_{j, c}<a$, induction implies that all
$\left[s_{a_{j, c}}, x_{j, c}\right] e_{b}=0$, and thus, $\left[s_{a}, x\right] e_{b}$
$=\left(\sum_{c} \lambda c, b{ }_{a}, c, a\right)\left[S_{a}, x\right] e_{b}$. The hypothesis $b \notin a$ implies that
either $a<b$ or $a \notin b$. If $a<b$, then 2.3 implies $\sum_{c} \lambda_{c, b} V_{a, c, a}=0$. If $a \notin b$, then $a \notin c$ for $a l l a \leq b$, so that $V_{a, c, a}=0$, $a l l c \leq b$ by $2.2(c)$. But if $c \notin b$, then $\lambda_{c, b}=0$ by definition. Hence $\sum_{c}^{\sum} \lambda_{c, b} V_{a, c, a}=0$ in this case also. In either case, this implies $\left[S_{a}, x\right] e_{b}=0$.

The next step is the explicit computation of the product $\left[S_{a}, x\right]\left[S_{a}, y\right] e_{a}$, any $x, y \in F\left(S_{a}\right)$. To obtain this, we must recall an isomorphism yielding the decomposition of $S_{a} \times S_{a}$ into transitive $G-s e t s$. For any $a \in P$, recall that $\operatorname{Aut}_{G}\left(S_{a}\right) \cong N_{G}\left(H_{a}\right) / H_{a}$, in particular $\left|A u t_{G}\left(S_{a}\right)\right|$ $=V_{a}$. We just state the following lemma.

Lemma 5.3. Let $a \in P$, and set $S_{a}^{i}=S_{a}, 1 \leq i \leq V_{a}$. Say that $\operatorname{Aut}_{G}\left(S_{a}\right)=\left\{\sigma_{i}: 1 \leq i \leq V_{a}\right\}$. For each i, define $\alpha_{i}: s_{a}^{i} \rightarrow s_{a} \times s_{a}$ by $\alpha_{i}(s)=\left(s, \sigma_{i}(s)\right)$. Then there is a (possibly eirpty) set $\left\{a_{j}: 1 \leq j \leq n\right\} \subseteq P$ with each $a_{j}<a$, and an isomorphism $a: s_{a}^{1} \dot{U} \ldots \dot{U} s_{a}^{V_{a}} \dot{U} \dot{j}_{j=1}^{n} S_{a_{j}} \rightarrow s_{a} \times s_{a}$ such that if $K_{i}: S_{a}^{i} \rightarrow S_{a}^{I} \dot{U} \ldots \dot{U} S_{a}^{V_{a}} \dot{j}{\underset{j}{i=1}}_{n}^{n} S_{a}$ is inclusion, then $\alpha_{i}=\alpha K_{i}$, all i.

Since F is a functor, there is a natural action of W_{S} on $F(S)$, for any $G-$ set S, given by $\sigma \cdot x=\left(0^{-1}\right)^{0}(x)$, $x \in F(S), \quad \sigma \in W_{S}$. Contravariance implies $(\sigma \tau) \cdot x$ $=\left((\sigma \tau)^{-1}\right)^{0}(x)=\left(\tau^{-1} \sigma^{-1}\right)^{0}(x)=\left(\tau^{-1}\right)^{0}\left(\tau^{-1}\right)^{0}(x)=\sigma \cdot(\tau \cdot x)$.

For brevity we denote $\sigma \cdot x$ by x_{σ}. This action plays a key role in the structure of $Q A_{F}(G)$, as illustrated by the following lemma.

Lemma 5.4. Let $a \in P, x, y \in F\left(S_{a}\right)$. Then

$$
\left[s_{a}, x\right]\left[s_{a}, y\right] e_{a}=\sum_{\sigma \in W_{a}}\left[s_{a}, x y_{\sigma}\right] e_{a}
$$

Proof. Let $\left\{a_{j}: l \leq j \leq n\right\} \subseteq P, \alpha, \quad \alpha_{i}, \quad K_{i}$ be as in Lemma 5.3. Denote $s=s_{a}^{1} \dot{U} \ldots \dot{U} S_{a}^{V_{a}} \dot{U} \underset{j=1}{n} S_{a_{j}}$, and let $\pi_{i}: S_{a} \times S_{a} \rightarrow S_{a}$ be the coordinate projections, $i=1,2$. Using the additivity of F, together with 5.2 and 5.3 we have

$$
\begin{aligned}
{\left[S_{a}, x\right]\left[S_{a}, y\right] e_{a} } & =\left[S_{a} \times S_{a}, \pi_{1}^{0}(x) \cdot \pi_{2}^{0}(y)\right] e_{a} \\
& =\left[S_{1} \alpha^{0}\left(\pi_{1}^{0}(x) \cdot \pi_{2}^{0}(y)\right)\right] e_{a} \\
& =\sum_{i=1}^{V_{a}}\left[S_{a}^{i}, K_{i}^{0} \alpha^{0}\left(\pi_{1}^{0}(x) \cdot \pi_{2}^{0}(y)\right)\right] e_{a} \\
& =\sum_{i=1}^{V_{3}}\left[S_{a}^{i}, \alpha_{i}^{0}\left(\pi_{i}^{0}(x) \cdot \pi_{2}^{0}(y)\right)\right] e_{a} \\
& =\sum_{i=1}^{V_{a}}\left[S_{a}^{i},\left(\pi_{1} \alpha_{i}\right)^{0}(x) \cdot\left(\pi_{2}{ }_{i}\right)^{0}(y)\right] e_{a}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{V}\left[S_{a}^{i}, x \cdot\left(\sigma_{i}\right)^{0}(y)\right] e_{a} \\
& =\sum_{\sigma \in W_{a}}\left[S_{a}, x y_{\sigma}\right] e_{a} .
\end{aligned}
$$

Corollary 5.5. Suppose $a \in P, \quad x \in F\left(S_{a}\right), y \in F_{N}\left(S_{a}\right)$. Then $\left[s_{a}, x\right]\left[s_{a}, y\right] e_{a}=V_{a}\left[s_{a}, x y\right] e_{a}$.

The following lemma will be crucial in computing the prime ideals of $A_{F}(G)$, when $F \in A M^{G}$ is normal.

Lemma 5.6. Let $a \in P, x \in F\left(S_{a}\right)$, and $y \in F_{N}\left(S_{a}\right)$. Then, $\left[S_{a}, x\right]\left[S_{a}, y\right]=v_{a}\left[S_{a}, x y\right]+\sum_{j=1}^{n}\left[s_{a_{j}}, x_{j}\right]$, where $a_{j}<a$, $x_{j} \in F\left(S_{a_{j}}\right)$, all j.

Proof. Let $\left\{a_{j}: 1 \leq j \leq n\right\} \subseteq P, \quad a, \alpha_{i}, K_{i}$ be as in 5.3,
 be the coordinate projections. By Lemma 5.3, $\pi_{1} \alpha K_{j}: S_{a}^{j}$ $=s_{a} \rightarrow s_{a}$ is the identity map, and $\pi_{2} \alpha K_{j}: s_{a}^{j}=s_{a} \rightarrow s_{a}$ is a G-automorphism, all j. Therefore, $x=\left(\pi_{1} \alpha K_{j}\right)^{0}(x)$, and $y=\left(\pi_{2} \alpha_{j}\right)^{0}(y)$, all j, since $y \in F_{N}\left(S_{a}\right)$. Thus,

$$
\begin{aligned}
{\left[S_{a}, x\right]\left[S_{a}, y\right] } & =\left[S_{a} \times S_{a}, \pi_{l}^{0}(x) \cdot \pi_{2}^{0}(y)\right] \\
& =\left[S,\left(\tau_{1} a\right)^{0}(x) \cdot\left(\tau_{2}\right)^{0}(y)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{V_{a}}\left[S_{a}^{i},\left(\pi_{1} \alpha K_{i}\right)^{0}(x) \cdot\left(\pi_{2} \alpha K_{i}\right)^{0}(y)\right] \\
& +\sum_{j=1}^{n}\left[S_{a_{j}}, x_{j}\right], \text { some } x_{j} \in F\left(S_{a_{j}}\right) \\
& =\sum_{i=1}^{V_{a}}\left[S_{a}, x y\right]+\sum_{j=1}^{n}\left[S_{a_{j}}, x_{j}\right] \\
& = \\
& V_{a}\left[S_{a}, x y\right]+\sum_{j=1}^{n}\left[S_{a_{j}}, x_{j}\right]
\end{aligned}
$$

For any monoid H, Let $Q H$ denote the rational group algebra. For $a \in P$, define $\psi_{a}: Q F\left(S_{a}\right) \rightarrow Q A_{F}(G) \cdot e_{a}$ by $\psi_{a}(x)=v_{a}^{-1}\left[S_{a}, x\right] e_{a}$, all $x \in F\left(S_{a}\right)$, then extend linearly to all of $Q F\left(S_{a}\right)$.

Lemma 5.7. For any $a \in P, \psi_{a}$ is a surjective Q-space homomorphism.

Proof. Everything is clear except surjectivity. It is surficient to show that for any $b \in P, x \in F\left(S_{b}\right),\left[S_{b}, x\right] e_{a}$ $\epsilon i m \psi_{a}$. We proceed by induction on b. First note that if $a \notin b$, then $\left[S_{b}, x\right] e_{a}=0 \in$ imf a^{\prime} by 5.2 , and if $a=b$, then $\left[s_{a}, x\right] e_{a}=\psi_{a}\left(V_{a} x\right)$. In particular, this covers the case $\mathrm{b}=1$. Assume that $\mathrm{b}>1$, and that whenever $\mathrm{c}<\mathrm{b}$ and $y \in F\left(S_{C}\right)$, then $\left[S_{C}, y\right] e_{a} \in \operatorname{im}{ }_{a}$. We may also assume $a<b$. Applying 5.1 and $2.5(a)$ we have

$$
\begin{aligned}
{\left[s_{b}, x\right] e_{a} } & =\left[s_{b}, x\right] e_{a} e_{a} \\
& =v_{a}^{-1}\left[s_{b}, x\right]\left[s_{a}, 1\right] e_{a} \\
& =v_{a}^{-1} v_{b, a, b}\left[s_{b}, x\right] e_{a}+v_{a}^{-1} \sum_{j=1}^{r}\left[s_{b_{j}}, x_{j}\right] e_{a},
\end{aligned}
$$

where $b_{j}<b$, and $x_{j} \in F\left(S_{b_{j}}\right), 1 \leq j \leq r$. Since $a<b$, $V_{b, a, b}=0$ by 2.2(c). By induction, each $\left[s_{b_{j}}, x_{j}\right] e_{a} \in \operatorname{im} \psi_{a}$, so thai

$$
\left[s_{b}, x\right] e_{a}=v_{a}^{-1} \sum_{j=1}^{r}\left[s_{b_{j}}, x_{j}\right] e_{a} \in \operatorname{im}_{a} .
$$

If $s \in \hat{G}$ and $\sigma \in W_{S}$, then clearly $\sigma \cdot$ ($x y$) $=(\sigma \cdot x)(\sigma \cdot y)$, all $x, y \in F(S)$. It follows that W_{S} acts as a group of ring automorphisms on $Q F(S)$. We let $Q F(S)$ ${ }^{W}$ S denote the fixed ring under this action, that is $Q F(S){ }^{W}{ }_{S}$ $=\left\{x \in Q F(S): \sigma \cdot x=x\right.$, all $\left.\sigma \in \mathbb{W}_{S}\right\}$. Then there is a Q. space epimorphism $\rho: Q F(S) \rightarrow Q F(S)^{W_{S}}$ given by $\rho(x)$ $=\left|W_{S}\right|^{-1} \sum_{\sigma \in W_{S}} \sigma \cdot x$. Note that the restriction of ρ to QR $(S)^{W_{S}}$ is the identity; moreover, $\rho(x \rho(y))=\rho(x) \rho(y)$, all $x, y \in \varnothing F(S)$. If $a \in P$ and $S=S_{a}$, we denote $\rho_{a}=\rho$. Thus $\rho_{a}(x)=V_{a}^{-1} \sum_{\sigma W_{a}} \sigma \cdot x$, all $x \in Q F\left(S_{a}\right)$.

Proposition 5.8. Let $a \in P$. Then $\psi_{a} \rho_{a}=\psi_{a}$. Moreover, the map $X_{a}: Q F\left(S_{a}\right)^{W}{ }^{W} \rightarrow Q A_{F}(G) e_{a}$, given by $X_{a}(x)=\psi_{a}(x)$, all $x \in Q\left(S_{a}\right)^{W} a$, is a surjective Q-algebra homomorphism. Proof. If $\sigma \in W_{a}$, then by Corollary $3.4\left[S_{a}, x\right]=\left[S_{a}, x_{\sigma}\right]$, all $x \in F\left(S_{a}\right)$, hence $\psi_{a}(x)=\psi_{a}\left(x_{\sigma}\right)$, all $x \in F\left(S_{a}\right)$. But then, $\psi_{a} \rho_{a}(x)=V_{a}^{-1} \sum_{\sigma \in W_{a}} \psi_{a}\left(x_{\sigma}\right)=V_{a}^{-1} \sum_{\sigma \in W_{a}} \psi_{a}(x)=\psi_{a}(x)$. The first result follows, since $F\left(S_{a}\right)$ spans $Q F\left(S_{a}\right)$. Furthermore the surjectivity of ψ_{a}, together with $\psi_{a} \rho_{a}=\psi_{a}$ ' imply that χ_{a} is surjective. To see that χ_{a} is an algebra homorphism, let $x, y \in F\left(S_{a}\right)$. Then

$$
\begin{aligned}
x_{a}(\rho(x) \rho(y)) & =x_{a}(\rho(x \cdot \rho(y))) \\
& =\psi_{a}(x \cdot \rho(y)) \\
& =v_{a}^{-1} \sum_{\sigma \in W_{a}} \psi_{a}\left(x y_{\sigma}\right) \\
& =v_{a}^{-2} \sum_{\sigma \in W_{a}}\left[s_{a}, x y_{\sigma}\right] e_{a} \\
& =V_{a}^{-2}\left[S_{a}, x\right]\left[S_{a}, y\right] e_{a}(b y 5.4) \\
& =\left(V_{a}^{-1}\left[s_{a}, x\right] e_{a}\right)\left(v_{a}^{-1}\left[S_{a}, x\right] e_{a}\right) \\
& =\ddot{v}_{a}(x) \cdot \psi_{a}(y)=\chi_{a}(\rho(x)) \cdot x_{a}(\rho(y))
\end{aligned}
$$

Since the elements $\left\{\rho(x): x \in F\left(S_{a}\right)\right\} \quad \operatorname{span} \emptyset F\left(S_{a}\right)^{W}, X_{a}$ is a Q-algebra homomorphism, as asserted.

$$
\text { As we shall presently show, each } x_{a} \text { is an }
$$

isomorphism.

Lemma 5.9. Let $S \in G$ and $x, y \in F(S)$. Then $x_{S} y$ if and only if $\rho(x)=\rho(y)$.

Proof \Rightarrow). Suppose there is some $a \in W_{S}$ with $a^{0}(x)=y$. Then

$$
\begin{aligned}
\rho(y) & =\left|W_{S}\right|^{-1} \sum_{\sigma \in W_{S}} \sigma^{0}(y)=\left|W_{S}\right|^{-1} \sum_{\sigma \in W_{S}} \sigma^{0} \alpha^{0}(x) \\
& =\left|W_{S}\right|^{-1} \sum_{\sigma \in W_{S}}(\alpha \sigma)^{0}(x)=\left|W_{S}\right|^{-1} \sum_{\sigma \in W_{S}} \sigma^{0}(x)=\rho(x) .
\end{aligned}
$$

$<=$ Suppose $\rho(\mathrm{x})=\rho(\mathrm{y})$. Since $F(S)$ is a Q -basis of $Q F(S)$, the identity $\sum_{\sigma \in W_{S}} \sigma^{0}(x)=\sum_{\sigma \in W_{S}} \sigma^{0}(y)$ implies that $\sigma^{0}(x)=\tau^{0}(y)$ for some $\sigma, \tau \in W_{S}$. If $\alpha=\sigma \tau^{-\ddagger} \in W_{S}$, then $\alpha^{0}(x)=y$. Thus $x^{\sim} S_{S}$.

Lemma 5.10. Let $x_{1}, \ldots, x_{n} \in F\left(S_{a}\right)$, with $x_{i} x_{a} x_{j}$ if $i \neq j$. Then $\left\{\left[s_{a}, x_{i}\right] e_{a}: 1 \leq i \leq n\right\}$ is a linearly independent set in $Q A_{F}(G) e_{a}$.

Proof. For any i, Lemma 5.1 implies that $\left[S_{a}, x_{i}\right] e_{a}$ $=\sum_{b \leq a} \lambda_{b, a}\left[s_{a}, x_{i}\right]\left[S_{b}, l\right]=\lambda_{a, a}\left[S_{a}, x_{i}\right]\left[S_{a}, 1\right]$
$+\sum_{b<a} \lambda_{b, a}\left[s_{a}, x_{i}\right]\left[s_{b}, 1\right]=\left[s_{a}, x_{i}\right]+\sum_{j=1}^{n} c_{j}\left[s_{a_{j}}, y_{j}\right]$, some $a_{j}<a \in P, c_{j} \in Q, Y_{j} \in F\left(S_{a_{j}}\right)$. Therefore, if there is a dependence relation $\sum_{i=1}^{n} d_{i}\left[s_{a}, x_{i}\right] e_{a}=0$ (where $d_{i} \in \mathbb{Z}$ without loss of generality), then Corollary 3.4 together with the above, yields a dependence relation $\sum_{i=1}^{n} d_{i}\left[S_{a}, x_{i}\right]=0$. By Theorem 3.9, and the assumption on the x_{i}, it follows that $d_{i}=0$, all i.
$\frac{\text { Theorem 5.11 }}{W}$. For any $a \in P$, the map $\chi_{a}: Q F\left(S_{a}\right)^{2} \rightarrow Q A_{F}(G) e_{a}$ is a Q-algebra isomorphism.

Proof. All that remains is injectivity. If R_{a} is a set of representatives for τ_{a} in $F\left(S_{a}\right)$, then by Lemma 5.9, $\left\{\rho_{a}(x): x \in R_{a}\right\}$ spans $Q F\left(S_{a}\right)^{W}$ as a Q-space. By Lemma 5.10, the set $\left\{x_{a} \rho_{a}(x): x \in R_{a}\right\}=\left\{v_{a}^{-l}\left[S_{a}, x\right] e_{a}: x \in R_{a}\right\}$ is linearly independent over Q. The result follows.

Theorem 5.12. Let G be a finite group, and let $F: \hat{G} \rightarrow A M$ be an additive contravariant functor. Then the injections $\chi_{a}: Q F\left(S_{a}\right)^{W} \rightarrow Q A_{F}(G) e_{a}$ induce a Q-algebra isomorphism

$$
x=\left(x_{a}\right): \prod_{a \in P} Q F\left(S_{a}\right)^{W} \rightarrow Q A_{F}(G)
$$

In particular, if every transitive G-set is normal over F, then

$$
Q A_{F}(G) \cong \underset{a \in P}{ } \notin F\left(S_{a}\right)
$$

We remark that the only denominators used in the proof that χ is an isomorphism were divisors of powers of $|G|$. Thus this theorem is valid upon replacing Q by any field K, where char $(K) \nmid|G|$.

Several ring theoretic properties of $Q A_{F}(G)$ now become transparent. We single out the following.

Corollary 5.13. Suppose $F: \hat{G} \rightarrow A B$ is an additive contravariant functor satisfying
i) for all $s \in \hat{G}, F(S)$ is torsion, and
ii) every transitive G-set is normal over F. Then $\quad Q A_{F}(G)$ is a von Neumann regular ring.

Proof. If $S \in \hat{G}$, then $F(S)$ is a torsion abelian group, hence it is locally finite. By a theorem of Villamayor (1958), the group algebra QF(S) is von Neumann regular. Since the product of regular rings is again a regular ring, the result follows from the second part of Theorem 5.12.

Corollary 5.14. If $F: \hat{G} \rightarrow A B$ is any contravariant additive functor, then $J\left(Q A_{F}(G)\right)=0$.

Proof. By a result of Montgomery (1976), if R is any ring acted upon by a finite group W of ring automorphisms, and if $|W|^{-1} \in R$, then $J\left(R^{W}\right)=J(R) \cap R^{W}$. Applying this to $R=Q F\left(S_{a}\right)$ and $W=W_{a}$, it follows from Passman (1971,
p. 73) that $J\left(Q F\left(S_{a}\right)^{W}\right)=0$. Since the radical respects products of rings, the result is a direct consequence of Theorem 5.12.

The Structure of $Q A_{F}(G / H)$

Theorem 5.12 effectively computes $0 A_{F}(G)$. We shall now indicate a construction which will permit the computation of $Q A_{F}(G / H)$, for any subgroup $H \leq G$.

Definition 5.15. If $H \leq G$ and S is an H-set, then the fibered product of G with S, denoted $G x{ }^{H} S$, is the G-set of (equivalence classes of) pairs (g, s), where $g \in G$, $s \in s$, with the identification $(g, s)=\left(g h^{-1}, h s\right)$, all $h \in H$. The G-action on $G x^{H} S$ arises from multiplication in the first component.

The notation $G X^{H} S$ is not standard; this is usually written as $\mathrm{Gx}_{\mathrm{H}} \mathrm{S}$. However, we have already used the later to denote to the pullback of $G / H-s e t s$. Thus, to avoid ambiguity, we will be non-standard.

Given two H-sets S and T, and an H-map $\phi: S \rightarrow T$, the map $1 x^{H}{ }_{\phi}: G x^{H} S \rightarrow G X^{H} T$ given by $\left(l x^{H}\right)(g, s)=(g, \phi(s))$ is a well-defined G-map.

Lemma 5.16. The correspondences $\mathrm{S} \rightarrow \mathrm{Gx}^{\mathrm{H}} \mathrm{S}$, and $\dot{\mathrm{o}} \rightarrow 1 \mathrm{x}^{\mathrm{H}}$ define a covariant, sum preserving functor from \hat{H} to \hat{G}.
proof. To say that $G x^{H}(*)$ is sum preserving is to say that, given any H-sets S and T, there is a natural isomorphism of G-sets $\left(G x^{H} S\right) \dot{U}\left(G X^{H} T\right) \cong G X^{H}(S \dot{U} T)$. This is clear.

It follows that if $F \in A M^{G}$, then $F \circ G X^{H}(*) \in A M^{H}$. For notation, let $F_{H}=F \circ G x^{H}(*)$. Thus, for any H-set S, $F_{H}(S)=F\left(G X^{H} S\right)$, and for any H-map $\phi: S \rightarrow T, F_{H}(\phi)$ $=\left(1 X_{\phi}{ }_{\phi}\right)^{0}: F_{H}(T) \rightarrow F_{H}(S)$. The result we are after is to show that for any subgroup $H \leq G$, there is an isomorphism between $A_{F}(G / H)$ and $A_{F_{H}}(H / H)$. We must first introduce some notation.

Let $H \leq G$, and let S be a G-set. Suppose there is a G-map $a: S \rightarrow G / H$. Denote by $S_{\alpha}=\{x \in S: \alpha(x)=I H\}$. Plainly, S_{α} is an H-set. Denote by μ_{α} the G-map $G x^{H} S_{\alpha}$ $\rightarrow s$ given by $\mu_{\alpha}(g, s)=g$. s, all $(g, s) \in G X^{H} S_{\alpha}$. It follows easily that μ_{α} is a G-isomorphism. Indeed, we are just formalizing the well-known fact that the categories of H-sets and G-sets over G/H are equivalent. Define a function $\vdots_{H}=A: A_{F}(G / H) \rightarrow A_{F_{H}}(H / H)$ by $\Lambda([S, a, x])$ $=\left[S_{\alpha}, H_{a}^{0}(x)\right]_{H^{\prime}}$ where we use the notation $\left[*,{ }^{*}\right]_{H}$ to denote elements of $A_{F_{H}}(H / H)$. Since $x \in F(S), \mu_{a}^{0}(x) \in F\left(G X^{H} S_{a}\right)$ $=F_{H}\left(S_{\alpha}\right)$, so our definition makes sense. We are ready to attack the main result of this section.

Theorem 5.17. For any functor $F \in A M^{G}$, and subgroup $H \leq G$, the function $\Lambda_{H}: A_{F}(G / H) \rightarrow A_{F_{H}}(H / H)$ is a ring isomorphism.

Proof. We shall show that Λ is a well defined bijection, and leave the straightforward verification that Λ preserves sums and products to the reader. Let $[S, \alpha, x]$, $[T, \beta, y]$ $\in A_{F}(G / H)$.
i) A is well defined. If $(S, \alpha, x) \cong(T, \beta, Y)$, then choose a G-isomorphism $\phi: S \rightarrow T$ with $\alpha=\beta \phi$ and $\phi^{0}(y)=x$. We must show $\left(S_{\alpha}, \mu_{\alpha}^{0}(x)\right) \cong\left(T_{\beta}, \mu_{\beta}^{0}(y)\right)$ in ($\left.H, F_{H}\right)$. Note that if $s \in S_{\alpha}$, then $\beta \phi(s)=\alpha(s)=1 H$, so $\phi(s) \in T_{\beta}$. Similarly, if $t \in T_{\beta}$, then $\phi^{-1}(t) \in S_{\alpha}$. Thus, $\psi=\left.\phi\right|_{S_{\alpha}}$ is an H-isomorphism $S_{\alpha} \rightarrow T_{\beta}$. We claim $\mu_{\beta}\left(l x_{\psi} H^{H}=\phi \mu_{\alpha}\right.$. Indeed, if $(g, s) \in G x^{H} S_{\alpha}$, then $\mu_{\beta}\left(l x^{H} \psi\right)(g, s)=\mu_{\beta}(g, \phi(s))$
$=g \phi(s)=\phi(g s)=\phi \mu_{\alpha}(g, s)$. Thus $\left(I x^{H} \psi\right)^{0} \mu_{\beta}^{0}(y)=\mu_{\alpha}^{0} \phi^{0}(y)$ $=\mu_{\alpha}^{0}(x)$. It follows that $\psi:\left(S_{\alpha}, \mu_{\alpha}^{0}(x)\right) \rightarrow\left(T_{\beta}, \mu_{\beta}^{0}(y)\right)$ is an isomorphism.
ii) Λ is injective. Suppose that $\Lambda([s, \alpha, x])$ $=\Lambda([T, \beta, Y])$, that is $\left[S_{\alpha}, \mu_{\alpha}^{0}(x)\right]_{H}=\left[T_{\beta}, \mu_{\beta}^{0}(y)\right]_{H}$. By Corollary 3.4, there is an H-isomorphism $\psi: S_{\alpha} \rightarrow T_{\beta}$ with $\left(1 x^{H} \psi\right)^{0} \mu_{B}^{0}(y)=\mu_{\alpha}^{0}(x)$. Let $\phi=\mu_{\beta} \circ\left(1 x^{H}\right) \circ \mu_{\alpha}^{-1}: S \rightarrow T$. Then ϕ is a G-isomorphism, with $\phi^{0}(y)$ $=\left(\mu_{\alpha}^{-1}\right)^{0}\left(1 x_{\psi}^{H}\right)^{0}\left(\mu_{\beta}\right)^{0}(y)=\left(\mu_{\alpha}^{-1}\right)^{0}\left(\mu_{\alpha}\right)^{0}(x)=x$. To see that $\alpha=\beta \phi$, let $s \in S$, and choose $g \in G$ with $\alpha(s)=g H$.

Then $\beta \phi(s)=3 \mu_{\beta}\left(1 x^{H} \psi\right) \mu_{\alpha}^{-1}(s)=\beta \mu_{\beta}\left(1 x^{H} \psi\right)\left(g, g^{-1} s\right)$
$=\beta \mu_{\beta}\left(g, \psi\left(g^{-1} s\right)\right)=\beta\left(g \psi\left(g^{-1} s\right)\right)=g \beta\left(\psi\left(g^{-1} s\right)\right)=g H=\alpha(s)$.
Thus $\phi:(S, \alpha, x) \rightarrow(T, \beta, y)$ is an isomorphism.
iii) Λ is surjective. Let $[T, y]_{H} \in A_{F_{H}}(H / H)$.

Denote $S=G X^{H} T$, and define $\alpha: S \rightarrow G / H$ by $\alpha(g, t)=g H$.
Then α is a well defined G-map with $S_{\alpha}=\left\{(h, t) \in G X^{H} T\right.$: $h \in H, t \in T\}$. Since $(h, t)=(1, h t)$, the map $\psi: S_{\alpha} \rightarrow T$ given by $\psi(h, t)=h t$ is an H-isomorphism. Moreover, $\mu_{\alpha}=1 x^{H} \psi: G X^{H} S_{\alpha} \rightarrow S$. Thus $[T, Y]_{H}=\left[S_{\alpha},\left(1 x^{H} \psi\right)^{0}(y)\right]$ $=\left[s_{\alpha}, \mu_{\alpha}^{0}(y)\right]=\Lambda([s, \alpha, y])$.

We can combine this result with Theorem 5.12 to determine the structure of $Q A_{F}(G / H)$. If $K \leq H \leq G$, then there is an embedding $\theta: A u t_{H}(H / K) \rightarrow \operatorname{Aut}_{G}(G / K)$ given by $\theta(\phi)(g K)=g \phi(1 K)$, all $\phi \in \operatorname{Aut}_{H}(H / K), \quad g K \in G / K$. Denote by $W_{K}^{H}=\left\{\partial(\phi): \phi \in \operatorname{Aut}_{H}(H / K)\right\}=$ im θ. Upon identifying $\operatorname{Aut}_{H}(H / K)$ with $N_{H}(K) / K$ and Aut ${ }_{G}(G / K)$ with $N_{G}(K) / K$, it is easy to see that ϑ corresponds to the inclusion of $N_{H}(K) / K$ into $N_{G}(K) / K$. As before, W_{K}^{H} will act on the group $F(G / K)$, and thus also act on the group algebra QF (G / K).

Theorem 5.18. Let $F: \hat{G} \rightarrow A M$ be an additive contravariant functor. Let $H \leq G$. Denote by $P(H)$ a set of representatives of conjugacy classes of subgroups of H. Then there
is a Q-algebra isomorphism: $\left.Q A_{F}(G / H) \xlongequal[K \in P(H)]{\cong} Q F(G / K)\right)^{W}$. Proof. For $K \in P(H)$, set $W_{K}=\left\{1 x_{\phi} H_{i} \phi \in A u t_{H}(H / K)\right\}$ $\subseteq A u t_{G}\left(G x^{H} H / K\right) . \quad B y E .12$ and $5.17, Q_{W}(G / H) \cong A_{W} F_{H}(H / H)$ $\cong \prod_{K \in P(H)}^{\cong} Q F_{H}(H / K){ }^{W_{K}}=\prod_{K \in P(H)} \otimes F\left(G x^{H} H / K\right){ }^{W_{K}}$. However, for any $K \in P(H), \quad G x^{H} H / K \cong G / K \quad$ (via $\left.(g, h K) \rightarrow g h K\right)$. Furthermore, this isomorphism carries the automorphism $1 x^{H}{ }_{\phi}$ of $G x^{H} H_{K}$ to the automorphism $\theta(\phi)$ of G / K; hence, it carries W_{K} onto W_{K}^{H}. It follows that $Q F\left(G X^{H} H / K\right){ }^{W_{K}} \cong Q F(G / K){ }^{W_{K}^{H}}$, for each K.

Corollary 5.19. If F is any additive contravariant functor from \hat{G} to $A B$, and $S \in \hat{G}$, then $J\left(Q A_{F}(S)\right)=0$. Proof. Expressing S as a disjoint union of transitive G-sets, the result follows directly from 3.6, 5.14, and 5.17 .

CHAPTER 6

PRIME IDEALS IN THE F-BURNSIDE RING

Throughout this chapter we fix a finite group G, and a functor $F \in A M^{G}$ such that every triansitive G-set is normal over F. In this setting, most of the structural results for $A(G)$ can be extended in some fashion to $A_{F}(G)$. The object of this chapter is to illustrate this principle.

An Embedding Theorem for $A_{F}(G)$
For $a \in P$, we let $X_{a}: Q F\left(S_{a}\right) \rightarrow Q A_{F}(G) e_{a}$ be the isomorphism of Chapter 5. Thus, $x_{a}(x)=V_{a}^{-1}\left[S_{a}, x\right] e_{a}$, all $x \in F\left(S_{a}\right)$. By Theorem 5.12, the product map $X=\left(X_{a}\right)$:
$\prod_{a \in P} Q F\left(S_{a}\right) \rightarrow Q A_{F}(G)$ is an isomorphism. We let $\Gamma: Q A_{F}(G)$ $\rightarrow \prod_{a \in P} Q F\left(S_{a}\right)$ be the inverse of X. For $b \in P$, we have the projection homomorphism $\quad r_{b}: \prod_{a \in P} Q F\left(S_{a}\right) \rightarrow Q F\left(S_{b}\right)$. We denote by Γ_{b} the composition $\Gamma_{b}=r_{b} \Gamma: Q A_{F}(G) \rightarrow Q F\left(S_{b}\right)$. Evidently, each Γ_{b} is a surjective Q-algebra homorphism.

Lemma 6.1. For any $a \in P$ we have
(a) $\quad \Gamma\left(\left[s_{a}, x\right] e_{a}\right)=V_{a} x$, all $x \in F\left(S_{a}\right)$,
(b) ${ }^{2} x_{a}$ is the identity on $Q F\left(S_{a}\right)$,
(c) $X_{a} \Gamma_{a}(x)=x e_{a}$, all $x \leqslant Q A_{F}(G)$.
proof. (a) If $x \in F\left(S_{a}\right)$, then $x=\Gamma \chi(x)$
$=\Gamma\left(V_{a}^{-1}\left[s_{a}, x\right] e_{a}\right)$.
(b) Since $\left.x\right|_{0\left(S_{a}\right)}=X_{a}$, it follows that for any
$x \in \varphi F\left(S_{a}\right), \quad \Gamma_{a} \chi_{a}(x)=r_{a} \Gamma X(x)=r_{a}(x)=x$.
(c) Let $x \in Q A_{F}(G)$. Then $x=x \cdot I=\sum_{b \in P} x e_{b}$,
where $x e_{b} \in Q A_{F}(G) e_{b}$. By Lemma 5.7, there are elements $y_{b} \in Q F\left(S_{b}\right)$ such that $X_{b}\left(y_{b}\right)=x e_{b}, a l l a \in P$. Then $x_{a} \Gamma a(x)=x_{a} \Gamma_{a}\left(\sum_{b \in P} x e_{b}\right)=x_{a} \Gamma_{a}\left(\sum_{b \in P} x_{b}\left(y_{b}\right)\right)=x_{a} r_{a} \Gamma \chi\left(\sum_{b \in P} y_{b}\right)$ $=x_{a} r_{a}\left(\sum_{b \in p} y_{b}\right)=x_{a}\left(y_{a}\right)=x e_{a}$.

Lemma 6.2. Let $g=|G|$, and suppose $0 \neq n \in \mathbb{Z}$ satisfies $g^{2} \mid n$. Then for any $a \in P$ and $x \in F\left(S_{a}\right)$, $n x \in \Gamma_{a}\left(A_{F}(G)\right)$.

Proof. Write $n=g^{2} m$, some $m \in z$. By 6.1(c), $X_{a}(n x)$ $=n v_{a}^{-1}\left[s_{a}, x\right] e_{a}=n V_{a}^{-1}\left[s_{a}, x\right] e_{a}^{2}=x_{a} \Gamma_{a}\left(n V_{a}^{-1}\left[S_{a}, x\right] e_{a}\right) . \quad$ By the injectivity of $X_{a}, \quad n x=\Gamma_{a}\left(n v_{a}^{-1}\left[S_{a}, x\right] e_{a}\right) . \quad$ By $2.2(a),(b)$, it follows that $g V_{a}^{-1} \in \mathbb{Z}$, and $g e_{a} \in A(G) \subseteq A_{F}(G)$; hence, $n V_{a}^{-1}\left[S_{a}, x\right] e_{a}=m\left(g V_{a}^{-1}\right)\left[S_{a}, x\right]\left(g e_{a}\right) \in A_{F}(G)$. Thus, $n x \in \Gamma_{a}\left(A_{F}(G)\right)$.

Lemma 6.3. $\quad \Gamma\left(A_{F}(G)\right) \subseteq \prod_{a \in P} \mathbb{Z} F\left(S_{a}\right)$.
Proof. Let $b \in P$ and $x \in F\left(S_{b}\right)$. By $3.11(c)$ it suffices to show that $?_{a}\left(\left[s_{b}, x\right]\right) \in \mathbb{Z F}\left(S_{a}\right)$, all $a \in P$. By $6.1(c)$ and $2.5(a), x_{a} \Gamma_{a}\left(\left[S_{b}, x\right]\right)=\left[S_{b}, x\right] e_{a}=v_{a}^{-1}\left[S_{b}, x\right]\left[S_{a}, l\right] e_{a}$ $=V_{a}^{-l}\left[s_{b} x S_{a}, \pi_{b}^{0}(x)\right] e_{a}$. By $2.2(c), S_{b} \times s_{a}$ is a union of
$V_{b, a}$ copies of S_{a}, together with various other S_{c}, where $c<a$. Thus, using the additivity of F together with 5.2, it follows that

$$
\begin{aligned}
& x_{a} \Gamma_{a}\left(\left[s_{b}, x\right]\right)= v_{a}^{-1}\left[s_{b} \times s_{a}, \pi_{b}^{0}(x)\right] e_{a} \\
&=\sum_{i=1}^{V_{b}, a} v_{a}^{-1}\left[s_{a}, x_{i}\right] e_{a}, \text { some } x_{i} \in F\left(s_{a}\right), \\
& 1 \leq i \leq v_{b, a} \\
&=\sum_{i=1}^{v_{b}, a} x_{a}\left(x_{i}\right)=x_{a}\left(\sum_{i=1}^{V_{b}, a} x_{i}\right)
\end{aligned}
$$

Since x_{a} is injective, $\Gamma_{a}\left(\left[s_{b}, x\right]\right)=\sum_{i=1}^{V_{b}, a} x_{i} \in \mathbb{Z} F\left(s_{a}\right)$. Combining these lemmas, we obtain the following theorem.

Theorem 6.4. $\prod_{a \in P}\left(|G|^{2} \mathbb{Z}\right) F\left(S_{a}\right) \subseteq \Gamma\left(A_{F}(G)\right) \subseteq \prod_{a \in P} Z F\left(S_{a}\right)$.
Corollary 6.5. The group $\prod_{a \in P} \mathrm{ZF}\left(\mathrm{S}_{\mathrm{a}}\right) / \Gamma\left(\mathrm{A}_{\mathrm{F}}(\mathrm{G})\right)$ is $|G|^{2}$-torsion.

Prime Ideals

We wish to compute almost all of the prime ideals of $A_{F}(G)$. Note that when $F=I$, the proof of Lemma 6.3 shows that $\Gamma_{a}\left(\left[s_{b}, l\right]\right)=V_{b, a}$, $a l l a, b \in P$. Especially, the
set of maps $\left\{\Gamma_{a}: a \in P\right\}$ is the same set used by Dress (1969) to describe the prime ideals of $A(G) \cong A_{I}(G)$. Following his notation, for any $a \in P$, and prime $0<p \in \mathbb{Z}$, we let $q(a, p)=\left\{x \in A(G): \Gamma_{a}(x) \equiv 0(\bmod p)\right\}$, and for $p=0$, $q(a, 0)=\operatorname{ker}_{\mathrm{r}_{\mathrm{a}}}$. The following description of the prime ideals of $A(G)$ is sufficient for our purposes.

Proposition 6.6. Let q be a prime ideal of $A(G)$. Then there is a unique minimal element $a \in P$ (w.r.t. \leq) such that if $p=\operatorname{char}(A(G) / q)$,
(a) $q=q(a, p)$,
(b) for any $b<a \in P,\left[S_{b}, 1\right] \in q(a, p)$,
(c) $\left[S_{a}, I\right] \notin q(a, p)$.

Proof. Dress (1969, p. 215).

When the prime ideal q of $A(G)$ is written in the form $q(a, p)$, where $a \in P$ is the element given in the Proposition, we will say that q is in standard form. Note that this form is unique: if $q(a, p)=q\left(b, p^{\prime}\right)$ are both in standard form, then $a=b$ and $p=p^{\prime}$. We now extend this result to $A_{F}(G)$.

Proposition 6.7. Let Q be a prime ideal of $A_{F}(G)$, such that $2 \cap \mathbb{Z}=\mathbb{Z}$, where $p \nmid|G|$ (possibly $p=0$). Then there is a unique minimal element $a \in P$ (w.r.t. \leq) such that
(a) for any $b<a \in P$, and any $x \in F\left(S_{b}\right),\left[S_{b}, x\right] \in Q$,
(b) for any $x \in F\left(S_{a}\right)$, if also $x^{-1} \in F\left(S_{a}\right)$, then $\left[s_{a}, x\right] \notin Q$.
Proof. Since $Q \cap A(G)$ is a prime ideal of $A(G)$ lying over pK, we may apply 6.6 , and write $Q \cap A(G)=q(a, p)$, in standard form.
(a) Induce on $b<a \in P$. If $a=1$, the result is clear, so we may assume $a>1$. By $6.6(b),\left[S_{b}, 1\right] \in Q$, all $b<a$. If $b=1$, then by 5.6 , $\left[S_{1}, x\right]\left[S_{1}, 1\right]$
$=V_{1}\left[S_{1}, x\right]$. Since $\left[S_{1}, I\right] \in Q$ and $p \nmid V_{1}$ r it follows that $\left[s_{1}, x\right] \in Q$. For the induction step, assume $1<b<a$, and that for all $c<b, y \in F\left(s_{c}\right)$, we have $\left[s_{c}, y\right] \in Q$. Then, by 5.6, $\left[S_{b}, x\right]\left[S_{b}, 1\right]=v_{b}\left[S_{b}, x\right]+\sum_{j=1}^{n}\left[S_{b_{j}}, y_{j}\right]$, where $b_{j}<b, y_{j} \in F\left(S_{b_{j}}\right)$ all j. But $\left[S_{b}, 1\right] \in Q$, and all $\left[s_{b_{j}}, y_{j}\right] \in Q$ by the induction hypothesis. Therefore $V_{b}\left[s_{b}, x\right] \in Q$, and since $p \nmid V_{b}, \quad\left[S_{b}, x\right] \in Q$.
(b) If in fact $\left[S_{a}, x\right] \in Q$, then by Lemma 5.6, $\left[s_{a}, x\right]\left[s_{a}, x^{-1}\right]=v_{a}\left[s_{a}, 1\right]+\sum_{j=1}^{n}\left[s_{a_{j}}, x_{j}\right]$, where $a_{j}<a$, $x_{j} \in F\left(S_{a_{j}}\right)$. By part (a), all $\left[S_{a_{j}}, x_{j}\right] \in Q$. But this implies that $V_{a}\left[S_{a}, l\right] \in Q \cap A(G)=q(a, p)$, which contradicts $p \nmid V_{a}$ and $\left[S_{a}, l\right] \& Q$.

If $b \in P$ also satisfies (a) and (b), then
$\left[S_{a}, l\right]\left[S_{b}, l\right]=\sum_{c \leq a, b} V_{a, b, c}\left[S_{c}, I\right] \notin Q$. Thus, there is some $c \leq a, b$ such that $\left[S_{c}, 1\right] \notin Q$. By $(a), a=b=c$.

For a prime ideal Q of $A_{F}(G)$ such that $Q \cap \mathbb{Z}$ $=\mathrm{p} \mathbb{R}_{\text {, }}$ where $\mathrm{p} \nmid|G|$, let $a \in P$ be the element given in the Proposition. Define $V(a, Q)=\left\{x \in \mathbf{Z F}\left(s_{a}\right):|G|^{n} x\right.$ $\in \Gamma_{a}(Q)$, some $\left.n \geq 0\right\}$.

Lemma 6.8. In the setting above, $V(a, Q)$ is a prime ideal of $\mathbb{Z F}\left(S_{a}\right)$ lying over pz .

Proof. Set $g=|G|$. To see that $V(a, Q)$ is an ideal, let $x \in V(a, Q), y \in z F\left(S_{a}\right)$. Say $g^{n} x=\Gamma_{a}(z)$, some $z \in Q, \quad n \geq 0$. By Lemma $6.2, g^{2} y=\Gamma_{a}(w)$, some $w \in A_{F}(G)$. Then $g^{n+2}(x y)=g^{n} x g^{2} y=\Gamma_{a}(z) \cdot \Gamma_{a}(w)=\Gamma_{a}(z w)$, so $x y \in V(a, Q)$. Since $V(a, Q)$ is additively closed, it is an ideal of $\mathbb{Z F}\left(S_{a}\right)$. To see that $V(a, Q)$ is prime, let x, $y \in \operatorname{ZF}\left(S_{a}\right)$ with $g^{n}(x y)=\Gamma_{a}(z)$, some $z \in Q, \quad n \geq 0$. Since $g e_{a} \in A_{F}(G), \quad X_{a}\left(g^{n+4} x y\right)=g^{4} X_{a}\left(g^{n} x y\right)=g^{4} X_{a} \Gamma_{a}(z)$ $=g^{3} z\left(g e_{a}\right) \in Q$. As in 6.2, it follows that $X_{a}\left(g^{2} x\right)$, $X_{a}\left(g^{n+2} y\right) \in A_{F}(G)$, thus, one of $X_{a}\left(g^{2} x\right), \quad X_{a}\left(g^{n+2} y\right) \in Q$. Applying Γ_{a}, and $6.1(b)$, either $g^{2} x \in \Gamma_{a}(Q)$ or $g^{n+2} y \in \Gamma_{a}(Q)$, that is, $x \in V(a, Q)$ or $y \in V(a, Q)$. Thus $V(a, Q)$ is a prime ideal.

To see that $V(a, Q) \cap \mathbf{z}=p z$, first let $x=t$

- $I_{F\left(S a_{a}\right)} \in V(a, Q) \cap z$, with $t \in \mathbb{Z}$. say $g^{n} x=\Gamma_{a}(z)$, $n \geq 0, \quad z \in Q$. Then $\chi_{a}\left(g^{n+1} x\right)=g^{n+1} t \chi_{a}\left(I_{F\left(S_{a}\right)}=g^{n+1} t e_{a}\right.$ $=g^{n+1} t V_{a}^{-1}\left[s_{a}, 1\right]+g^{n} t_{b<a} g \lambda_{b, a}\left[s_{b}, 1\right]$. On the other hand,
$\chi_{a}\left(g^{n+1} x\right)=\chi_{a} \Gamma_{a}(g z)=\left(g e_{a}\right) z \in Q$, so it follows from the choice of $a \in P$ and Proposition 6.6, that
$g^{n} t\left({g V_{a}^{-1}}_{-1}\left[S_{a}, 1\right] \in Q\right.$. Again by 6.6, $\left[S_{a}, l\right] \& Q$, so $g^{n_{t}}\left({g V_{a}^{-1}}^{-1} \in Q \cap \mathbb{Z}=\underline{Z}\right.$. Since $p X|G|$, we must have $p \mid t$, establishing the inclusion $V(a, Q) \cap z \subseteq p \mathbb{Z}$. Conversely, since $Q \cap \mathbb{Z}=p \mathbb{Z}, p\left[S_{a}, I\right] \in O$. Then, using $\Gamma_{a}\left(\left[S_{a}, I\right]\right)$ $=V_{a} I_{F}\left(S_{a}\right)$, we have $g\left(p \cdot I_{F}\left(s_{a}\right)=\left(g V_{a}^{-1}\right) p V_{a} I_{F}\left(s_{a}\right)\right.$ $=\Gamma_{a}\left(\left(g V_{a}^{-1}\right) p\left[S_{a}, I\right]\right) \in \Gamma_{a}(Q)$, so $p \cdot I_{F\left(S_{a}\right)} \in V(a, Q) \cap \mathbf{z}$. The result follows.

For an $a \in P$ and prime ideal I of $\mathbb{Z F}\left(S_{a}\right)$, define $R(a, L)=\left\{x \in A_{F}(G): \Gamma_{a}(x) \in L\right\}=\Gamma_{a}^{-1}(L) \cap A_{F}(G)$. plainly, $R(a, L)$ is a prime ideal of $A_{F}(G)$.

Lemma 6.9. Let Q be a prime ideal of $A_{F}(G)$ such that $Q \cap \mathbf{Z}=\mathrm{p} \mathbb{Z}$, where $\mathrm{p} \nmid|\mathrm{G}|$. Let $\mathrm{a} \in \mathrm{P}$ be the element given in Proposition 6.7. Then $Q=R(a, V(a, Q))$.

Proof. We must show that $Q=\left\{x \in A_{F}(G): \Gamma_{a}(x) \in V(a, Q)\right\}$.
G) Let $x \in Q$. Then $\Gamma_{a}(x) \in \Gamma_{a}(Q)$, so $\Gamma_{a}(x) \in V(a, Q)$.
D) Let $x \in A_{F}(G)$ be such that $\Gamma_{a}(x) \varepsilon V(a, Q)$. If $g=|G|$, then $g^{n} \Gamma_{a}(x)=r_{a}(y)$, some $y \in Q, n \geq 0$. It follows that $\left(g e_{a}\right) g^{n} x=\chi_{a} r_{a}\left(g^{n+1} x\right)=\chi_{a} \Gamma_{a}(g y)$ $=\left(g e_{a}\right) y \in Q$. However, $g \in Q$ (since $p \nmid g$), and therefore by 6.5 and the choice of $a \in P, g e a \& Q$. Thus $x \in O$.

Lemma 6.10. Let $a \in P$, and let L be a prime ideal of $\mathbb{Z} F\left(S_{a}\right)$ with $L \cap \mathbb{Z}=p \mathbb{Z}$, Then $R(a, L) \cap A(G)=q(a, p)$.

Proof. ©) If $x \in R(a, L) \cap A(G)$, then $\Gamma_{a}(x) \in L \cap \mathbf{z}$ $=p z$, so $x \in q(a, p)$.

$$
\text { ㄹ) If } x \in q(a, p) \text {, then } \Gamma_{a}(x) \in p \mathbf{z} \subseteq L \text {, so }
$$ $x \in R(a, L) \cap A(G)$.

Lemma 6.11. Let $a \in P$. Suppose L_{1}, L_{2} are prime ideals of $\mathbb{Z} F\left(S_{a}\right)$, where $L_{i} \cap \mathbf{z}=p_{i} Z, p_{i} \nmid|G|$, $i=1,2$. If $R\left(a, L_{1}\right)=R\left(a, L_{2}\right)$, then $L_{1}=L_{2}$.

Proof. Set $g=|G|$, and let $x \in I_{1}$. Then $g^{2} x=\Gamma_{a}(y)$, some $y \in A_{F}(G)$, by Lemma 6.2. Since $y \in R\left(a, L_{1}\right)=R\left(a, L_{2}\right)$, we have $g^{2} x=\Gamma_{a}(y) \in L_{2}$. Since $p_{2} \nmid g$, we conclude that $x \in L_{2}$, establishing $L_{1} \subseteq L_{2}$. By a symmetrical argument, $L_{2} \subseteq L_{1}$.

Theorem 6.12. Let $\mathrm{F}: \hat{\mathrm{G}} \rightarrow \mathrm{AM}$ be a contravariant additive functor such that every transitive G-set is normal over F. Let $q(a, p)$ be a prime ideal of $A(G)$ in standard form, with $p \nmid|G|$. Then there is a bijective correspondence between the set of prime ideals of $A_{F}(G)$ lying over $q(a, p)$ and the set of prime ideals of $\mathbf{Z F}\left(\mathrm{S}_{\mathrm{a}}\right)$ lying over pZ .

Proof. If L is a prime ideal of $\mathbb{Z F}\left(S_{a}\right)$ lying over $p Z$, then by $6.10, R(a, L)$ is a prime ideal of $A_{F}(G)$ lying over $q(a, p)$. The correspondence $L \rightarrow R(a, L)$ is infective by 6.11, and surjective by 6.8 and 6.9.

The Extension $\quad A_{F}(G) / A(G)$
We shall finish this chapter by describing those normal functors F for which the ring extension $A_{F}(G) / A(G)$ is integral. Indeed, this will occur precisely when each of the groups $F(S), S \in G$, is torsion.

For any integer $n>0$, we let s^{n} denote the product of n copies of S, and $\pi_{n, i}: S^{n} \rightarrow S$ will denote projection onto the ith component.

Lemma 6.13. Let F be a normal functor, $S \in G$ and $x \in F(S)$. Then $[S, x]^{n}=\left[S^{n}, \pi_{n, 1}^{0}\left(x^{n}\right)\right]$, for all $0<n \in z$.

Proof. Induction on n. The formula being clear for $\mathrm{n}=1$, assume $\mathrm{n}>1$, and that the result holds for lesser n. Let $t: S^{n} \rightarrow S^{n}$ be the G-automorphism which interchanges the first two components, and is the identity on every other component. Clearly, $\pi_{n, 2}=\pi_{n, 1} t$, so by normality of F, $\pi_{n, 2}^{0}(y)=t^{0} \pi_{n, 1}^{0}(y)=\pi_{n, 1}^{0}(y)$, all $y \in S$. Thus,

$$
\begin{aligned}
{[S, x]^{n} } & =[S, x]\left[S^{n-1}, \pi_{n-1,1}^{0}\left(x^{n-1}\right)\right] \\
& =\left[s^{n}, \pi_{n, 1}^{0}(x) \cdot \pi_{n, 2}^{0}\left(x^{n-1}\right)\right] \\
& =\left[s^{n}, \pi_{n, 1}^{0}(x) \cdot \pi_{n, 1}^{0}\left(x^{n-1}\right)\right]=\left[s^{n}, \pi_{n, 1}^{0}\left(x^{n}\right)\right]
\end{aligned}
$$

Theorem 6.14. Let $F \in \mathrm{AM}^{\mathrm{G}}$ be a normal functor. Then the extension $A_{F}(G) / A(G)$ is integral if and only if for every $G-s e t$ S, $F(S)$ is a torsion group.

Proof \Rightarrow). Assume $A_{F}(G) / A(G)$ is integral. Since $A(G) / \mathbb{Z}$ is already integral, so is $A_{F}(G) / Z$. By way of contradiction suppose that for some $G-s e t \quad S, F(S)$ is not torsion. By additivity of F, this implies that for some $a \in P, \quad F\left(S_{a}\right)$ is not torsion. Pick $x \in F\left(S_{a}\right)$ of infinite order. Since $x^{j} \neq x^{k}$ if $j \neq k$, normality of F implies that $x^{j} \chi_{a} x^{k}$. By integrality, choose $\Phi(x)=x^{n}$ $+\sum_{k=0}^{n-1} c_{k} x^{k} \in \mathbf{Z}[x]$ with $\Phi\left(\left[S_{a}, x\right]\right)=0$, that is $\left[S_{a}, x\right]^{n}$ $+\sum_{k=1}^{n-1} c_{k}\left[S_{a}, x\right]^{k}+c_{0}=0$. Multiplying both sides by $V_{a} e_{a}$ and applying 5.5 and $2.5(a)$, this yields

$$
V_{a}^{n}\left[s_{a}, x^{n}\right] e_{a}+\sum_{k=1}^{n-1} c_{k} v_{a}^{k}\left[s_{a}, x^{k}\right] e_{a}+c_{0}\left[s_{a}, l\right] e_{a}=0,
$$

which is a contradiction to 5.10.
<<) By $3.11(c)$, it suffices to show that if $a \in P$ and $x \in F\left(S_{a}\right)$, then $\left[S_{a}, x\right]$ is integral over $A(G)$. If (say) $x^{n}=1$, then by 6.13, $\left[S_{a}, x\right]^{n}=\left[S_{a}^{n}, \pi_{n, 1}^{0}\left(x^{n}\right)\right]$ $=\left[S_{a}^{n}, I\right] \in A(G)$. Thus $\left[S_{a}, x\right]$ satisfies the monic polynomial $X^{n}-\left[S_{a}^{n}, 1\right] \in A(G)[X]$.

Finally, we wish to make a statement about the Boolear algebra of idempotents of $A_{F}(G)$.

Theorem 6.15. Let $\mathrm{F}: \hat{\mathrm{G}} \rightarrow \mathrm{AB}$ be a normal, additive, contravariant functor. Then $A(G)$ and $A_{F}(G)$ contain exactly the same idempotents.

Proof. By a theorem of Kaplansky (see Passman 1971), given any group H, the only idempotents in the group algebra $\mathbb{Z} H$ are 0,1 . Thus if $e \in A_{F}(G)$ is idempotent, then for any $b \in P, \Gamma_{b}(e) \in\{0,1\}$. Therefore $\Gamma(e) \in \underset{a \in P}{\prod} Z \cdot I_{F\left(S_{a}\right)}$. It follows from the definition of x that, $e=X \Gamma(e) \in Q(G)$. Since also $e \in A_{F}(G)$, we must have $e \in A(G)$. The other inclusion is trivial.

THE BRAUER RING OF A FIELD

In this chapter we begin the study of the tensor product of separable algebras over a field. Our guiding question is this: is there a natural ring into which we may embed the Brauer group as a subgroup of its unit group? Of course, one should expect this ring to yield information about separable algebras which the Brauer group does not, and one should hope to be able to recover the Brauer group from purely ring theoretic properties. Although the material presented here may seem unrelated to what has come before, the necessary tie up will come next chapter. We begin our discussion with a generalization of a well known result on the tensor product of two subfields of a finite Galois extension.

Tensor Products of Separable Algebras

Let R be a commutative ring, with 0,1 its only idempotents (R is connected). Let S be a Galois extension of R, and let S_{1}, S_{2} be separable, G-strong subalgebras of S, where G is the Galois group of S / R (see Chase, Harrison and Rosenberg (1965) for definitions). Let $H_{i} \leq G$ be the Galois group of $S / S_{i}, i=1$, 2. Choose
$\sigma_{1}, \ldots, \sigma_{m} \in G$ to obtain a double coset decomposition
$G=\bigcup_{i=1}^{m} H_{1} \sigma_{i} H_{2}$. Define a map $\phi: S_{1} \Theta R_{R} S_{2}+S_{1} S_{2}{ }^{1}+\ldots$
$\dot{+} s_{1} s^{\sigma_{m}}$ by $\phi\left(u(X)=\left(u \sigma_{1}(v), \ldots, u \sigma_{m}(v)\right)\right.$, where $s_{1} s^{\sigma_{i}}$ denotes the compositum of S_{1} and $\sigma_{i}\left(S_{2}\right)$ in S. Plainly, ϕ is a well defined R-algebra homomorphism.

Proposition 7.1. ϕ is an injective R-algebra homorphism.
Proof. Suppose $\sum_{i} u_{i}(X) v_{i} \in$ ker ϕ, so that $\sum_{i} u_{i} \sigma_{j}\left(v_{i}\right)=0$ for all $I \leq j \leq m$. Let $\tau \in G$; find $\alpha \in H_{1}, \beta \in H_{2}$ so that $\tau=a \sigma_{j} B$ for some j. Then $\sum_{i} u_{i} \tau\left(v_{i}\right)=\alpha\left(\sum_{i} u_{i} \sigma_{j}\left(v_{i}\right)\right)$ $=0$, showing

$$
\begin{equation*}
\sum_{i} u_{i} \tau\left(v_{i}\right)=0 \text { for all } \tau \in G \tag{1}
\end{equation*}
$$

If E denotes the S-algebra of all functions from G to S under pointwise operations, then the map $h: S X{ }_{R} \rightarrow E$ given by $h(u \times v)(\sigma)=u \cdot \sigma(v)$ is an s-algebra isomorphism, by Chase et al. (1965, p. 4). By (1), $\sum_{i} u_{i}(x) v_{i} \in \operatorname{kerh}=0$.

Under rather non-restrictive conditions, ϕ will also be surjective.

Proposition 7.2. Let $g=|G|$. Suppose that $g=g \cdot I_{R}$ is a unit in R. Then ϕ is an isomorphism.

Proof. Since S / R is Galois, there are elements $x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}$ of s such that $\sum_{i=1}^{n} x_{i} \sigma\left(y_{i}\right)$ $=\delta_{I, \sigma}$, all $\sigma \in G$. Set $x_{i}^{\prime}=\sum_{\rho \in H_{1}} \rho\left(x_{i}\right)$ and $y_{i j}^{\prime}$ $=\sum_{\gamma \in H_{2}}^{\gamma \sigma_{j}^{-1}\left(y_{i}\right) \text {. By Galois theory, } x_{i}^{\prime} \in S_{1}, y_{i j}^{\prime} \in S_{2}, 1 \leq i d i n d i l}$ $\leq n, \quad 1 \leq j \leq m$. Set $g_{k}=\left|H_{I} \cap \sigma_{k} H_{2} \sigma_{k}^{-1}\right|, \quad l \leq k \leq m$. We claim that

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{\prime} \sigma_{k}\left(y_{i j}^{\prime}\right)=g_{k} \delta_{j, k} \quad l \leq j, \quad k \leq m \tag{2}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\sum_{i} x_{i}^{\prime} \sigma_{k}\left(y_{i j}^{\prime}\right) & =\sum_{i} \sum_{\rho \in H_{1}} \sum_{\rho \in H_{2}} \rho\left(x_{i}\right) \sigma_{k} \gamma \sigma_{j}^{-1}\left(y_{i}\right) \\
& =\sum_{\rho \in H_{l}} \sum_{\rho \in H_{2}} \rho\left(\sum_{i} x_{i} \rho^{-1} \sigma_{k} \gamma \sigma_{j}^{-1}\left(y_{i}\right)\right) \\
& =\sum_{\rho \in H_{1}} \sum_{\rho \in H_{2}} \delta . \rho_{l, \rho}^{-1} \sigma_{k} \gamma \sigma_{j}^{-1}
\end{aligned}
$$

by the condition on the x_{i} and y_{i}. If $j \neq k$, then σ_{j} and σ_{k} are distinct double coset representatives, so that $\rho^{-1} \sigma_{k} \gamma \sigma_{j}^{-1} \neq 1$, all ρ and γ, and (2) holds in this case. If $j=k$, then $\rho^{-1} \sigma_{k} \gamma \sigma_{j}^{-1}=1$ iff $\rho=\sigma_{k} \gamma \sigma_{k}^{-1} \in H_{1}$ $\cap \sigma_{k} H_{2} \sigma_{k}^{-1}$. Since ρ uniquely determines $\gamma,(2)$ holds in all cases.
since g_{k} divides g, our hypothesis implies that g_{k} is a unit in R, all k. Define $e_{k}=g_{k}^{-1} \sum_{i} x_{i}^{\prime} \circledast y_{i k}^{\prime}$
$\in S_{1} \times \mathrm{R}_{2}$. From (2) it follows that $\phi\left(\mathrm{e}_{\mathrm{k}}\right)=(0, \ldots, 0,1$, $0, \ldots, 0)$, with l in the $k t h$ place. The surjectivity of ϕ follows easily.

We remark that implicit in the proof of 7.2 is the construction of the indecomposable idempotents of $S_{1} \otimes_{R} S_{2}$, namely, the e_{k}. When R and S are both fields, there is an easier proof.

Proposition 7.3. If R and S are fields, then ϕ is an isomorphism.

Proof. Since $i m \phi \subseteq s_{1} s_{2}^{\sigma_{1}} \dot{+} \ldots+\mathrm{s}_{1} s_{2}{ }^{\sigma}$, we may prove equality by counting dimensions. Since ϕ is injective, $\operatorname{dim}(\operatorname{im} \phi)=\left(\operatorname{dim} S_{1}\right) \cdot\left(\operatorname{dim} S_{2}\right)$. Moreover, by Rotman (1978, p. 17), $\operatorname{dim}\left(s_{1} s_{2}{ }^{\sigma}+\ldots \dot{+} s_{1} s_{2}{ }^{\sigma}\right)=\sum_{i=1}^{m}\left[s_{1} s_{2}{ }^{\sigma_{i}}: R\right]$ $=\sum_{i=1}^{m}\left[G: H_{1} \cap{ }^{\sigma_{i_{H}}}\right]=\left[G: H_{1}\right]\left[G: H_{2}\right]=\left(\operatorname{dim} S_{1}\right) \cdot\left(\operatorname{dim} S_{2}\right)$. The Brauer Ring

Let E / F be a (not necessarily finite) Galois extension of fields. Let $\operatorname{SEP}(E, F)$ be the category of separable F-algebras A, with the center of A (denoted $Z(A)$) isomorphic with a finite product of finite dimensional subfields of E. If the extension E / F is understood, we abbreviate $\operatorname{SEP}(E, F)$ as SEP. Plainly, SEP is closed under the formation of algebra products. It is also closed under tensor
products. Indeed, let $A, B \in \operatorname{SEP}$ with $Z(A) \cong K_{1} \dot{\ldots}$ $\dot{+} K_{m}$ and $z(B)=L_{1} \dot{+} \ldots+L_{n}$ with each K_{i}, L_{j} a finite separable extension of F. Since any pair K_{i}, L_{j} can be embedded in a finite Galois extension of F contained in E, it follows that $Z\left(A \times X_{F} B\right) \cong Z(A) X_{F} Z(B)$ $\cong \prod_{i, j} K_{i}(X) L_{j}, \quad$ which in turn is isomorphic with a finite product of finite dimensional subfields of E by Proposition 7.3. It follows that we may form the associated Grothendieckring of this category, as in Bass (1968, pp. 344-47). Thus, denote $S(E, F)=K_{0} S E P(E, F)$. We denote the image of an object $A \in \operatorname{SEP}(E, F)$ in $S(E, F)$ by [A]. The following proposition collects some basic facts.

Proposition 7.4. (a) For elements [A], [B] in $S(E, F)$, $[A]+[B]=[A+B]$ and $[A][B]=\left[A \otimes X_{F} B\right]$. $A l$ so, $l_{S(E, F)}$ $=[F]$.
(b) Every element of $S(E, F)$ can be written in the form [A] - [B] for some $A, B \in S E P$.
(c) If $A, B \in S E P$, then $[A]=[B]$ if and only if $A \cong B$ as F-algebras.
proof. (a), (b) and the if part of (c) are direct consequences of the definitions. For the only if part of (c), suppose $[A]=[B]$. Then there is an algebra $C \in \operatorname{SEP}$ with $A+C \cong B+C$ as F-algebras. Since separable $F-$ algebras are finite dimensional and semisimple, the uniqueness
statement of Wedderburn's theorem implies that $A \cong B$ as F-algebras.

Note that if A is a finite dimensional, simple $F-$ algebra, with $Z(A)$ isomorphic to a (finite separable) subfield of E, then in particular, A is a central simple $Z(A)$-algebra, and $Z(A)$ is a separable F-algebra. Since central simple algebras are separable, transitivity of separability implies that A is a separable F-algebra. It follows that $A \in S E P$. Thus any product of matrix algebras, $M_{n_{1}}\left(D_{1}\right)+\ldots+M_{n_{r}}\left(D_{r}\right)$, with each D_{i} a division algebra, and $Z\left(D_{i}\right)$ isomorphic to a finite dimensional subfield of E, is in SEP. Conversely, by Wedderburn's theorem, any algebra $B \in S E P$ has this form uniquely up to F-isomorphism. This discussion, together with 7.4, establishes the following proposition.

Proposition 7.5. As an abelian group, $S(E, F)$ is free on the set $\{[A]: A \in S E P, A$ is simple\}.

Proposition 7.6. There is a group endomorphism β of $S(E, F)$ such that if $A \cong M_{n}(D)$ as F-algebras, where $D \in S E P$ is a division algebra, then $\beta([A])=[D]$. The image of B is the subgroup of $S(E, F)$ that is freely generated by \{[D]:D $\in \operatorname{SEP}$ is a division algebra\}. Moreover, for all u, $v \in S(E, F)$, we have $S(B(u))=B(u)$ and $3(u v)$ $=\beta(\Omega(u) \cdot \beta(v))$.

Proof. If $A \in S E P$ is simple, then $A \cong M_{n}(D)$, where D is a division algebra with $Z(A) \cong Z(D)$. Thus, $D \in S E P$. Moreover, if $B \cong M_{m}\left(D^{\prime}\right) \in \operatorname{SEP}$ with $A \cong B$, then by Wedderburns theoerm, $D \cong D^{\prime}$. It follows from 7.5 that the correspondence [A] \rightarrow [D] gives a well defined group endomorphism β of $S(E, F)$ such that $\beta\left(\left[M_{n}(D)\right]\right)=[D]$. The statement regarding the image of β is clear. Since $\beta\left(\beta\left(\left[M_{n}(D)\right]\right)=\beta([D])=[D]=\beta\left(\left[M_{n}(D)\right]\right)\right.$, it follows from 7.5 that $\beta^{2}(u)=\beta(u)$, all $u \in S(E, F)$. Finally, let $A \cong M_{n}(D), B \cong M_{m}\left(D^{\prime}\right)$ be in SEP, where D, D^{\prime} are division algebras. Since $D\left(X F^{D^{\prime}}\right.$ is semisimple, we can write $D(\underbrace{}_{F^{\prime}} D^{\prime} \cong M_{n_{1}}\left(D_{1}\right)+\ldots+M_{n_{r}}\left(D_{r}\right)$. Then $A\left(x F_{F} B\right.$ $\cong\left(M_{n}(F) \otimes F D\right) \otimes_{F}\left(M_{m}(F) \otimes F^{\prime}\right) \cong M_{n m}(F) \otimes_{F}\left(M_{n_{1}}\left(D_{1}\right)\right.$
 $\beta([A][B])=B\left(\left[A \propto_{F} B\right]\right)=\left[D_{1}\right]+\ldots+\left[D_{r}\right]=B\left([D] \cdot\left[D^{\prime}\right]\right)$ $=\beta(\beta([A]) \cdot \beta([B]))$. Again by 7.5, it follows that $\beta(u v)=\beta(\beta(u) \cdot \beta(v))$, for all $u, v \in S(E, F)$.

Corollary 7.7. ker β is an ideal of $S(E, F)$. As an ideal it is generated by $\left\{\left[M_{n}(F)\right]-[F]: n \in \mathbf{z}^{+}\right\}$.

Proof. Suppose $u \in k e r \beta$ and $v \in S(E, F)$. Then 3 (uv) $=\beta(\beta(u) \cdot \beta(v))=\beta(0 \cdot \beta(v))=0$, so $u v \in$ ker β, and ker β is an ideal. Let I be the ideal of $S(E, F)$ generated by $\left\{\left[M_{n}(F)\right]-[F]: n \in Z^{+}\right\}$. Plainly, $I \subseteq$ kerß. On the other
hand, if $A \cong M_{n}(D) \in \operatorname{SEP}$, then $[A]-B([A])$
$=[D]\left(\left[M_{n}(F)\right]-[F]\right) \in I$. Extending linearly, it follows that $[A]-\beta([A]) \in I$ for all $A \in S E P$. Thus, if $[A]-[B] \in \operatorname{ker} \beta$, then $\beta([A])=\beta([B])$, so that $[A]-[B]$ $=([A]-\beta([A]))-([B]-\beta([B])) \in I$. Thus ker $\beta \subseteq I$. The factor ring $S(E, F) /$ ker β is called the Brauer ring of E / F. We denote this ring by $B S(E, F)$. For $A \in S E P$, we denote $\langle A\rangle=[A]+\operatorname{ker} B \in B S(E, F)$.

Proposition 7.8. As an abelian group, $B S(E, F)$ is free on the generating set $\{\langle D\rangle: D \in S E P$ is a division algebra\}. Moreover, if $D, D^{\prime} \in S E P$ are division algebras, then $\langle D\rangle=\left\langle D^{\prime}\right\rangle$ if and only if $D \cong D^{\prime}$ as F-algebras.

Proof. Since $\beta^{2}=\beta$, it follows that $S(E, F)=$ ker β ims. Therefore, the canonical isomorphism $B S(E, F) \cong i m \beta$ of abelian groups, together with 7:6, imply the first statement. If $\langle D\rangle=\left\langle D^{\prime}\right\rangle$, then $[D]-\left[D^{\prime}\right] \in \operatorname{ker} \beta \Rightarrow 0=\beta\left([D]-\left[D^{\prime}\right]\right)$ $=[D]-\left[D^{\prime}\right] . T h u s, D \cong D^{\prime}$ as F-algebras by $7.4(c)$.

For the field F, let F_{S} denote its separable algebraic closure. In this case we denote $S\left(F_{S}, F\right)=S(F)$, and $B S(F)=B S\left(F_{S}, F\right)$. Whenever $E \subseteq E^{\prime}$ is an inclusion of Galois extensions of F, there is a natural inclusion of categories $\operatorname{SEP}(E, F) \subseteq \operatorname{SEP}(E \cdot F)$, hence also of rings, $S(E, F) \subseteq S\left(E^{\prime}, F\right), B S(E, F) \subseteq B S\left(E^{\prime}, F\right)$. Since every finite

Galois extension of F is contained in F_{S}, and F_{S} is the union (direct limit) of such extensions, we obtain the following.

Proposition 7.9. Let F be any field. Then as rings,

$$
S(F)=\operatorname{US}_{E}(E, F)=\lim _{\vec{E}} S(E, F),
$$

and

$$
\operatorname{BS}(F)=\operatorname{UGBS}_{E}(E, F)=\lim _{\vec{E}} B S(E, F),
$$

where the union and the limit are over the directed set of all finite Galois extensions of F.

Finally, note that the mapping from $B r(F) \rightarrow B S(E, F)$, given by $\{A\} \rightarrow\langle A\rangle$, is a well defined injection into the group of units of $B S(E, F)$. Indeed, if A and B are central simple F-algebras, with $A \cong M_{n}(D)$ and $B \cong M_{m}\left(D^{\prime}\right)$ then the equality $\langle A\rangle=\langle B\rangle$ yields $D \cong D^{\prime}$ as F-algebras, by 7.8. Therefore, $\{A\}=\{B\}$ in $B r(F)$.

Induction and Restriction

We claim that $B S(E, F)$ is the correct ring into which one should embed $\operatorname{Br}(F)$. The justification of this assertion is the subject matter of the next chapter. Especially, we shall examine the consequences of the general
induction lemma for Mackey-functors. For this, we need a corresponding induction and restriction for the rings $S(E, F)$ and $B S(E, F)$. For any intermediate subfield $F \subseteq K \subseteq E$, we shall let ${ }^{[A]} K$ denote the image of $A \in \operatorname{SEP}(E, K)$ in $S(E, K)$.

Proposition 7.10. Let $F \subseteq K \subseteq I \subseteq E$ be a tower of fields.
(a) There is a group homomorphism ind $=$ ind $_{\mathrm{L} \rightarrow \mathrm{K}}$:
$S(E, L) \rightarrow S(E, K)$ such that ind $\left([A]_{L}\right)=[A]_{K}$ for all
$A \in \operatorname{SEP}(E, L)$.
(b) ind $_{I \rightarrow F}=$ ind $_{K \rightarrow F} \circ$ ind $_{I \rightarrow K}$.
(c) ind $I_{r \rightarrow K}$ factors through the projection of S to BS, that is, there is a group homomorphism $\overline{\text { ind }}=\overline{i n d}_{I \rightarrow K}$: $B S(E, L) \rightarrow B S(E, K)$ such that the following diagram commutes.

Proof. (a) This follows from Proposition 7.5, together with the existence of the natural forgetful functor $\operatorname{SEP}(E, L)$ $\rightarrow \operatorname{SEP}(E, K)$.
(b) Clear.
(c) Let ${ }^{a}{ }_{L / K}$ denote the endomorphism of $S(L, K)$

Suppose ${ }^{[A]_{L}}-[B]_{L} \in \operatorname{ker} \beta_{E / L}$. Write $A \cong M_{n_{I}}\left(D_{1}\right) \dot{+} \ldots$ $\dot{+} M_{n_{r}}\left(D_{r}\right)$ and $B \cong M_{m_{l}}\left(D_{l}^{\prime}\right) \dot{+} \ldots \dot{+} M_{m_{s}}\left(D_{s}^{\prime}\right)$, where the isomorphisms are as L-algebras. Since ${ }^{[A]}{ }_{L}-{ }^{[B]}{ }_{L} \in \operatorname{ker} \beta_{E / L}$, Proposition $7.4(c)$, together with the uniqueness statement of Wedderburn's theorem, insures $r=s$, and (without loss of generality) $D_{i} \cong D_{i}^{\prime}$ as L-algebras, all i. Then $D_{i} \cong D_{i}^{\prime}$ as K-algebras, all i, so that ${ }^{[A]}{ }_{K} \cdots{ }^{[B]}{ }_{K}$ $\in \operatorname{ker} \beta_{E / k}$.

Restriction will correspond to scalar extension.

Proposition 7.11. Let $F \subseteq K \subseteq I \subseteq E$ be a tower of fields.
(a) There is a ring homomorphism res $=$ res ${ }_{K \rightarrow L}$:
$S(E, K) \rightarrow S(E, L) \quad$ such that $\operatorname{res}\left([A]_{K}\right)=\left[L \otimes X_{K}^{A} L^{\prime}\right.$ all $A \in \operatorname{SEP}(E, K)$.
(b) $r e s_{F \rightarrow I}=r e s_{K \rightarrow L} \circ r e s_{F \rightarrow K}$.
(v) $r e s_{K \rightarrow L}$ factors through the projection of S onto BS.

Proof. (a) The existence of res follows the observation that if $A \cong B$ as K-algebras, then $L X_{K}^{A} \cong L X_{K}^{A}$ as L-algebras, and 7.5. res is a ring homomorphism because of the distributive property of tensor products over algebra products, and the fact that $L \otimes X_{K}\left(A(x){ }_{K}\right)^{\prime}$ $\cong\left(L \otimes_{K}^{A}\right) \otimes_{L}\left(L \otimes_{K}^{b}\right)$ as L-algebras.
(b) Clear.
(c) We must show that res $_{K \rightarrow L}\left(\operatorname{ker}_{E / K}\right) \subseteq \operatorname{ker}_{E / L}$.

Note that if $n \in \mathbb{Z}^{+}$, then $r e s_{K \rightarrow L}\left(\left[M_{n}(K)\right]_{K}-[K]_{K}\right)$ $=\left[M_{n}(L)\right]_{L}-[L]_{L}$. Therefore, by Corollary 7.7, and the fact that res is a ring homomorphism, the inclusion holds.

CHAPTER 8

APPLICATIONS OF INDUCTION THEORY
 TO ASSOCIATIVE ALGEBRAS

In this chapter we give a construction which allows us to connect the Brauer ring of the previous chapter with the F-Burnside rings we studied earlier. The generality with which this construction goes through gives hope for many more applications than those we include here.

A Category Anti-Equivalence

Fixed throughout this chapter is a finite Galois extension $E \not F$ with Galois group $G=G a l(E / F)$. The category \hat{G} of finite G-sets is then anti-equivalent with the category $\operatorname{CSEP}(E, F)$, whose objects are those F-algebras R such that R is F-isomorphic with a finite product of (separable) subfields of E containing F. In other words, CSEP is the full subcategory of SEP consisting of the commutative algebras in SEP. This anti-equivalence is given as follows. For $S \in \hat{G}$, define $R_{S}=\operatorname{Hom}_{G}(S, E)$, under pointwise operations. Then $R_{S} \in \operatorname{CSEP}$. Moreover, i.f $S \cong G / H$ for some subgroup H of G, then $R_{S} \cong E^{H}$ (fixed field of H) under the correspondence $\gamma \rightarrow \gamma(1 H)$, where $1 H$ is the coset containing the identity. For a G-map $\phi: S \rightarrow T$, there is an
induced F-algebra homomorphism $\phi_{\star}: R_{T} \rightarrow R_{S}$, given by $\phi_{*}(\gamma)=\gamma \circ \phi_{\gamma}$ all $\gamma \in R_{T}$. Conversely, if $R \in \operatorname{CSEP}$, define $S_{R}=\operatorname{Hom}_{F}(R, E)$, a finite set, which becomes a G-set using the G-action on E. Again we observe that if L is a subfield of E / F, then S_{L} is isomorphic with the transiive G-set of cosets modulo Gal(E/L). The isomorphism $G / G a l(E / L) \rightarrow S_{L}$ is given by $\left.\sigma G a l(E / L) \rightarrow \sigma\right|_{L^{\prime}}$ any $\sigma \in G$. If $\alpha: R \rightarrow R^{\prime}$ is an F-algebra homomorphism, then the map $\alpha *: S_{R^{\prime}} \rightarrow S_{R^{\prime}}$ given by $\alpha^{*}(f)=f \circ \alpha\left(f \in S_{R^{\prime}}\right)$, is a $G-$ map. Note that for any two G-sets S_{1}, S_{2}, we have $R_{S_{1}} \cup S_{2}=\operatorname{Hom}_{G}\left(S_{1} \cup S_{2}, E\right) \cong \operatorname{Hom}_{G}\left(S_{1}, E\right) \dot{+} \operatorname{Hom}_{G}\left(S_{2}, E\right)=R_{S_{1}}+R_{S_{2}}$. This isomorphism takes an element $a \in R_{S_{1}} \dot{S_{2}}$, to the pair $\left(\left.\alpha\right|_{S_{1}},\left.\alpha\right|_{S_{2}}\right)$.

We now show how from an arbitrary covariant, product preserving functor $\rho: C S E P \rightarrow A M$, we may construct an additive contravariant functor $F_{\rho}: \hat{G} \rightarrow A M$, and thus obtain the Green-functor $A_{\rho}=A_{F_{\rho}}$. Namely, define $F_{\rho}: \hat{G} \rightarrow A M$ by $F_{\rho}(S)=\rho\left(R_{S}\right)$, and for a G-map $\phi: S \rightarrow T$, denote (as usual) $\phi^{0}=F_{\rho}(\phi)=\rho\left(\phi_{*}\right): F_{\rho}(T) \rightarrow F_{\rho}(S)$. Plainly, F_{ρ} is a contravariant functor from \hat{G} to $A M$.

Proposition 8.1. Given any covariant, product preserving functor $\rho: \operatorname{CSEP}(E, F) \rightarrow A M$, the functor $F_{0}: \hat{G} \rightarrow A M$ is additive.

Proof. Let $S_{1}, S_{2} \in \hat{G}$, and let $K_{i}: S_{i} \rightarrow S_{I}$ U S_{2} be the inclusions. We must show $K_{1}^{0} \times K_{2}^{0}: F_{\rho}\left(S_{1} \dot{U} S_{2}\right) \rightarrow F_{\rho}\left(S_{1}\right)$ $\times F_{\rho}\left(S_{2}\right)$ is an isomorphism. Let $\theta: R_{S_{1}} \dot{U} S_{2} \rightarrow R_{S_{1}} \dot{+} R_{S_{2}}$ be the canonical isomorphism, and let $\pi_{i}: R_{S_{1}} \dot{\mp} R_{S_{2}} \rightarrow R_{S_{i}}$ be projection. Since p preserves products, the composition $\left(\rho\left(\pi_{1}\right) \times \rho\left(\pi_{2}\right)\right) \circ \rho(\theta): \rho\left(R_{S_{1}} \dot{U}_{2}\right) \rightarrow \rho\left(R_{S_{1}}\right) \times \rho\left(R_{S_{2}}\right)$ is an isomorphism. However, an easy check shows that $K_{i}=\pi_{i}{ }^{\theta}$, $i=1,2$, so that $\left(\rho\left(\pi_{1}\right) \times \rho\left(\pi_{2}\right)\right) \circ \rho(\theta)=\rho\left(\pi_{1} \theta\right) \times \rho\left(\pi_{2} \theta\right)$ $=\rho\left(\mathrm{K}_{1 *}\right) \times \rho\left(\mathrm{K}_{2 *}\right)=\mathrm{K}_{1}^{0} \times \mathrm{K}_{2}^{0}$ 。

Our applications arise as follows. For any commutative ring R, let $A Z(R)$ denote the category of Azumaya (central separable) R-algebras. When R is a field, AZ (R) coincides with the category of finite dimensional, central simple R-algebras. For an algebra A in $A Z(R)$, let (A) denote its R-algebra isomorphism class, and \{A\} its image in the Brauer group, $\operatorname{Br}(\mathrm{R})$. Denote the set of all isomorphim classes in $A Z(R)$ by $A Z_{0}(R)$. Then $A Z_{0}(R)$ becomes a commutative monoid under tensor products over R, with identity element (R). If $\phi: R \rightarrow S$ is a homomorphism of commutative rings, then the correspondence $(A) \rightarrow\left(S \times X_{R}\right)$ (where S is considered an R-algebra via ϕ) defines a monoid homomorphism, $A Z_{0}(R) \rightarrow A Z_{0}(S)$. Thus the correspondence $R \rightarrow A Z_{0}(R)$ defines a covariant functor, which is easily checked to be product preserving (that is,
$A Z_{0}(R+S) \cong A Z_{0}(R) \times A Z_{0}(S)$, for any commutative rings R and S). Similarly, the correspondence $R \rightarrow B r(R)$ is covariant and product preserving.

By applying Proposition 8.1 to the restrictions of $A Z_{0}$ and $B r$ to $\operatorname{CSEP}(E, F)$, we may obtain the Greenfunctor $A_{A Z}$ and $A_{B r}$. More explicitly, for any G-set S, a typical element of $A_{A Z}(S)$ will be a formal difference $\left[T_{1}, \phi_{1},\left(A_{1}\right)\right]-\left[T_{2}, \phi_{2}\left(A_{2}\right)\right]$, where T_{i} is a G-set, $\phi_{i}: T_{i} \rightarrow S$ is a G-map, and $\left(A_{i}\right) \in A Z_{0}\left(R_{T_{i}}\right), i=1,2$. A similar description holds for ${ }^{A_{B r}}(S)$. One of the major results of this chapter establishes that for any subgroup $H \leq G$, there are isomorphisms $A_{A Z}(H) \cong S\left(E, E^{H}\right)$ and $A_{B r}(H) \cong B S\left(E, E^{H}\right)$. We first need a few preliminaries on the structure of antiequivalence of \hat{G} and CSEP.

Proposition 8.2. Let S and T be transitive $G-s e t s$, and $\alpha: R_{S} \rightarrow R_{T}$ an F-algebra isomorphism. Then there is a $G-$ isomorphism $\phi: T \rightarrow s$ such that $\phi_{*}=\alpha$.

Proof. Without loss of generality, we may assume $S=G / H$, and $T=G / J$ for some subgroups $H, J \leq G$. Define $\lambda_{S}: R_{S} \rightarrow E^{H}$ by $\lambda_{S}(\gamma)=\gamma(1 H) \quad\left(\gamma \in R_{S}\right)$, and $\lambda_{T}: R_{T} \rightarrow E^{J}$ by $\lambda_{T}(\gamma)=\gamma(I J) \quad\left(\gamma \in R_{T}\right)$. Then λ_{S} and λ_{T} are $F-$ algebra isomorphisms. Define $3: E^{H} \rightarrow E^{J}$ by $\beta=\lambda_{T} T^{\alpha} S^{-1}$. Thus, if $\gamma \in R_{S}$, then $\beta \lambda_{S}(\gamma)=\lambda_{T} \alpha(\gamma)$, that is,
$\beta \gamma(1 H)=\alpha(Y)(1 J)$. Since E / F is Galois, there exists $\bar{\beta} \in G=\operatorname{Gal}(E / F)$ such that the restriction of $\bar{\beta}$ to E^{H} is β. Define $\phi: G / J \rightarrow G / H$ by $\phi(\sigma J)=\sigma \bar{\beta} H$. Check that this is a well defined G-isomorphism. To see that $\phi_{*}=a_{\text {, }}$ let $\gamma \in R_{S}=\operatorname{Hom}_{G}(S, E)$ and $t=\sigma J \in T=G / J$. Then
$\phi_{*}(\gamma)(t)=\gamma \phi(\sigma J)=\gamma \sigma \bar{\beta} H=\sigma \bar{\beta} \gamma(1 H)=\sigma \beta_{\gamma}(1 H)=\sigma \alpha(\gamma)(1 J)$
$=\alpha(\gamma)(\sigma J)=\alpha(\gamma)(t)$.

Proposition 8.3. Let S and T be any $G-s e t s$, and suppose $\alpha: R_{S} \rightarrow R_{T}$ is an F-algebra isomorphism. Then there is a G-isomorphism $\phi: T \rightarrow S$ such that $\phi_{*}=\alpha$. Proof. Write $S=S_{1} \dot{U} \ldots \dot{U} S_{m}$ and $T=T_{1} \dot{U} \ldots \dot{U} T_{n}$ as disjoint unions of transitive G-sets. Since $R_{S_{1}} \dot{+} \ldots$ $\dot{+} R_{S_{m}} \cong R_{S} \cong R_{T} \cong R_{T_{1}} \dot{+} \ldots \dot{+} R_{T_{n}}$, and each $R_{S_{i}}, \quad R_{T_{j}}$ is a field, we must have $m=n$. For $1 \leq i \leq n$, let $e_{i} \in R_{S}$ and $f_{i} \in R_{T}$ be the primitive idempotent corresponding to S_{i} and T_{i}, respectively. That is, $e_{i}(s)=1$ if $s \in S_{i}$, and $e_{i}(s)=0$ if $s \notin S_{i}$, and similarly for f_{i}. since a is a ring isomorphism, there is a permutation π of $\{1, \ldots, n\}$ such that $\alpha\left(e_{k}\right)=f_{\pi(i)}$. Now, for each i, define $\lambda_{i}: R_{S_{i}} \rightarrow R_{S}$ by $\lambda_{i}(f)(s)=\left\{\begin{array}{ll}f(s) & s \in S_{i} \\ 0 & s \notin S_{i}\end{array}\right.$. Then λ_{i} is a monomorphism with $\lambda_{i}\left(l_{R_{S_{i}}}\right)=e_{i}$. Moreover, if
$f \in R_{S}$, then $\lambda_{i}\left(\left.f\right|_{S_{i}}\right)=f \cdot e_{i}$. Next define $\alpha_{i}: R_{S_{i}}$
$\rightarrow R_{T}$ (i) by $\alpha_{i}(f)(t)=a\left(\lambda_{i}(f)\right)(t)$, all $t \in T_{T(i)}$. It
is straightforward to check that each α_{i} is an F-algebra isomorphism. Thus, by 8.2, there exists $\phi_{i}: T_{\pi(i)} \rightarrow S_{i}$, $G-$ isomorphisms, with $\phi_{i *}=\alpha_{i}$. Define $\phi=\phi_{I} \dot{U} \ldots \dot{U} \phi_{n}: T$
\rightarrow S. Then ϕ is a G-isomorphism. Moreover, if $f \in R_{S}$ and $t \in T$ with (say) $t \in T_{\pi(i)}$, then $\phi_{*}(f)(t)=f \phi(t)$
$=\left.f\right|_{S_{i}}\left(\phi_{i}(t)\right)=\phi_{i} *\left(\left.f\right|_{S_{i}}\right)(t)=\alpha_{i}\left(\left.f\right|_{S_{i}}\right)(t)=a\left(\lambda_{i}\left(\left.f\right|_{S_{i}}\right)\right)(t)$
$=\alpha\left(f e_{i}\right)(t)=\alpha(f)(t) \cdot \alpha\left(e_{i}\right)(t)=\alpha(f)(t) f_{\pi(i)}(t)=\alpha(f)(t)$. Thus, $\phi_{*}=\alpha$, as needed.

Proposition 8.4. Suppose $\alpha, \beta: S \rightarrow T$ are G-maps, with T a transitive $G-s e t$. If $\alpha_{*}=\beta_{*}: R_{T} \rightarrow R_{S}$, then $\alpha=\beta$. Proof. Without loss of generality $T=G / H$, some subgroup $H \leq G$. Let $s \in S$, and set $\alpha(s)=g H$. By transitivity, there exists $g_{1} \in G$ such that $g_{1} \alpha(s)=3(s)$, that is, $\beta(s)=g_{1} g H$. Since $\alpha_{*}=\beta_{*}$, for any $f \in \operatorname{Hom}_{G}(G / H, E)$ we have $f a=f \beta$. Thus $f(1 H)=f\left(g^{-1} g H\right)=g^{-1} f(\alpha(s))$ $=g^{-1} f(B(s))=g^{-1} g_{1} f(\alpha(s))=g^{-1} g_{1} g f(1 H)$. Since $\operatorname{Hom}_{G}(G / H, E) \cong E^{H}$ via the map $f \rightarrow f(1 H)$, it follows from Galois theory that $g^{-1} g_{1} g \in H$, hence $g_{1} g=g h$, some $h \in H$. But then, $\quad S(s)=g_{1} g H=g H=\alpha(s)$.

Lemma 8.5. Let $H, J \leq G$, and fix a double coset de-
 U $H / H \cap{ }^{\sigma^{r_{J}}}$ as H-sets.

Proof. For each i, define $\beta_{i}: H / H \cap^{\sigma_{i}}{ }_{J} \rightarrow G / J$ by $\beta_{i}\left(h\left(H \cap^{\sigma_{j}}\right)\right)=h \sigma_{i} J$. It is straightforward to verify that the map $\beta=\beta_{I} \dot{U} \ldots \dot{U} \beta_{r}$ is an H-isomorphism.

Proposition 8.6. Let $H \leq G$. Let S_{1}, S_{2} be any G-sets, and suppose there are G-maps $\alpha_{i}: S_{i} \rightarrow G / H, \quad i=1,2$. Define $\Phi: R_{S_{1}}\left(x R_{G / H} R_{S_{2}} \rightarrow R_{S_{1} x_{G / H} S_{2}}\right.$ by $\Phi(f(x) g)(x, y)=f(x) \cdot g(y)$, all $(x, y) \in S_{I} x_{G / H} S_{2}$. Then Φ is an $R_{G / H}$-algebra and $R_{S_{1}}-R_{S_{2}}$ bimodule isomorphism.

Proof (Sketch). First suppose S_{1} and S_{2} are transitive, so that with no loss of generality, $S_{1}=G / H_{I}$ and $S_{2}=G / H_{2}$ for some subgroups $H_{1}, H_{2} \leq G$. Say $a_{i}\left(1 H_{i}\right)$ $=g_{i} H$, $i=1,2$. Then $H_{i}^{g} \subseteq H$, so we may decompose H into $H_{1}^{G_{1}}-H_{2}^{g_{2}} \underset{g_{i}}{ }$ double costs: $H=\underset{i=1}{n} H_{1}{ }^{g}{ }_{\sigma_{i}} H_{2}{ }^{g_{i}}$. Since $R_{G / H_{i}} \cong \mathrm{E}^{\mathrm{H}_{\mathrm{i}}} \cong \mathrm{E}^{\mathrm{H}_{i}}$ as $\mathrm{R}_{\mathrm{G} / \mathrm{H}}$-algebras, Proposition 7.3

$=\prod_{i=1}^{n} E^{H_{1}{ }^{g^{\prime}} \cap_{H}{ }_{2}{ }_{2}{ }^{-1}}$. Explicitly, this map sends $f(X g$ to $\left(\ldots, f\left(g_{1}^{-1} H_{1}\right) \cdot g\left(\sigma_{i} g_{2}^{-1} H_{2}\right), \ldots\right)$.

Now if an element $\sum_{i} f_{i} \otimes g_{i} \in$ ken ϕ, then
$\sum_{i} f_{i}\left(\mathrm{XH}_{1}\right) \cdot g_{i}\left(\mathrm{yH}_{2}\right)=0$, whenever $\left(x H_{I}, \mathrm{yH}_{2}\right) \in G / H_{1} X_{G / H} G / H_{2}$. However, since each $\sigma_{i} \in H$, it follows that $\left(g_{1}^{-1}, \sigma_{i} g_{2}^{-1}\right)$ $\in \mathrm{G} / \mathrm{H}_{1} \mathrm{X}_{\mathrm{G} / \mathrm{H}} \mathrm{G}^{\left(\mathrm{H}_{2}\right.}$. Thus $\sum_{i} \mathrm{f}_{i} \times \mathrm{g}_{\mathrm{i}}$ is in the kernel of the map described in the first paragraph (which was an isomorphism), so $\sum_{i} f_{i}\left(X g_{i}=0\right.$, and Φ is injective.

Surjectivity of Φ follows from a dimension count.
Set $T=\left\{\sigma \in G: \alpha_{1}\left(1 \mathrm{H}_{1}\right)=\alpha_{2}\left(\sigma \mathrm{H}_{2}\right)\right\}$. If $\sigma \in \mathrm{T}$, then $\mathrm{H}_{1} \sigma \mathrm{H}_{2}$ $\subseteq T$, so we may decompose T into $H_{1}-H_{2}$ double costs:
$T=\bigcup_{i=1}^{m} H_{1} \tau_{i} H_{2}$. Set $J_{i}=H_{1} \cap{ }^{\tau_{i}} H_{2}$, and define
$\beta_{i}: G / J_{i} \rightarrow G / H_{1} X_{G / H}{ }^{G} / H_{2}$ by $B_{i}\left(g J_{i}\right)=\left(g H_{1}, g \tau_{i} H_{2}\right)$. Five pages of routine calculations show that each β_{i} is an injective G-map, and that $\beta=\beta_{1}$ U. ... Ur $\beta_{m}: G / J_{1} \dot{U} \ldots$ U G / J_{m} $\rightarrow \mathrm{G} / \mathrm{H}_{1} \mathrm{X}_{\mathrm{G} / \mathrm{H}} \mathrm{G}^{\mathrm{G}} \mathrm{H}_{2}$ is a G -isomorphism. Therefore $R_{G / H_{1}} x_{G / h}{ }^{G / H_{2}} \cong \prod_{i=1}^{m} E^{J}$. Another straightforward argument establishes that $m=n$, and that there is a permutation of $\{1, \ldots, n\}$ with $J_{\pi(i)}$ conjugate to $H_{1}{ }^{g}{ }^{1} \cap H_{2}^{g_{2}{ }^{-1}}$.
 coincide, and Φ is surjective.

In general, write $S_{1}=T_{1} \dot{U} \ldots \dot{U} T_{r}$ and $s_{2}=U_{1} \dot{U} \ldots \dot{U} U_{t}$, as unions of transitive G-sets. Then $R_{S_{1}} \times R_{G / H} R_{S_{2}} \cong \prod_{i, j} R_{T} \times R_{G / H} R_{U} \xlongequal{\cong} \prod_{i, j} R_{T_{i}} x_{G / H} U_{j}$
$=R_{i, j}^{U_{i} T_{G / H} X_{j}} \xlongequal{\cong} R_{S_{1}} x_{G / H} S_{2}$. Check that this isomorphism is Φ.

The Isomorphism Theorem

Let $H \leq G$. For any $S \in \hat{G}, A \in A Z\left(R_{S}\right)$ and G-map $\alpha: S \rightarrow G / H$, define an $R_{G / H}$-algebra A_{α} to be A as a ring, with $R_{G / H}$ action induced from $\alpha_{*}: R_{G / H} \rightarrow R_{S}$. Thus, if $x \in R_{G / H}$ and $a \in A$, then $x \cdot a=\alpha_{*}(x) a$. Note that $A \cong A_{\alpha}$ as F-algebras, since a_{*} is an F-algebra homomorphism.

Proposition 8.7. Let $H \leq G$, and let $[S, \alpha,(A)]$,
$[T, \beta,(B)] \in A_{A Z}(H)$. Then $[S, \alpha,(A)]=[T, \beta,(B)]$ if and only if $A_{\alpha} \cong B_{B}$ as $R_{G / H}-$ algebras.

Proof. \Rightarrow) By Corollary 3.4, there is a G-isomorphism $\phi: T \rightarrow S$ with $\alpha \phi=B$ and $\phi^{0}((A))=(B)$. This last condition yields an R_{T}-algebra isomorphism $\forall R_{T} \otimes X_{S} A \rightarrow B$. Define $\gamma: A \rightarrow B$ by $\gamma(a)=(1 \times a)$, all a $\in A$. Since
$R_{S} \cong R_{T}, \alpha$ is a ring isomorphism. Furthermore, if $x \in R_{G / H}$, then $\gamma(x \cdot a)=\gamma\left(\alpha_{*}(x) a\right)=\psi\left(1 \otimes \alpha_{*}(x) a\right)$ $=\psi\left(\phi_{*} \alpha_{*}(x) \otimes a\right)=\psi\left(\beta_{*}(x)(x a)=\beta_{*}(x) \psi(1\right.$ (x) $a)=\beta_{*}(x) \gamma(a)$ $=x \cdot \gamma(a)$. Thus γ is an $R_{G / H}$-algebra isomorphism of A_{α} to B_{β}.
\Leftrightarrow Suppose $\gamma: A_{\alpha} \rightarrow B_{B}$ is an $R_{G / H}$ algebra isomorphism. Then $\gamma\left(Z\left(A_{\alpha}\right)\right)=Z\left(B_{\beta}\right)$, that is, $\gamma\left(R_{S}\right)=R_{T}$. By Proposition 8.3, there is a G-isomorphism $\phi: T \rightarrow S$ with $\phi_{*}=\gamma$. We claim that $\alpha \phi=\beta$. By Proposition 8.4, since G / H is transitive, it is enough to show that $\phi_{*} \alpha_{*}=\beta_{*}$: $R_{G / H} \rightarrow R_{T}$. Then, if $x \in R_{G / H^{\prime}}$ we have $\phi_{*} \alpha_{*}(x)=\gamma\left(\alpha_{*}(x)\right)$ $=\beta_{*}(x) \gamma\left(l_{A}\right)=\beta_{*}(x)$. Finally we must show that $\phi^{0}((A))$ $=(B)$, that is, $R_{T} \times R_{S}{ }^{A} \cong B$ as R_{T}-algebras. The map $\psi: R_{T} \times R_{S} A \rightarrow B$ given by $\psi(x \times a)=x y(a)$ is such an isomorphism. Thus $\phi:(T, \beta,(B)) \rightarrow(S, \alpha,(A))$ is an isomorphism.

For any subgroup $H \leq G$, the isomorphism $R_{G / H} \cong E^{H}$ allows us to replace $R_{G / H}$ by E^{H}, if we consider every $R_{G / H}$ algebra to be an E^{H}-algebra via this isomorphism. Define $\Psi_{H}=\Psi: A_{A Z}(H) \rightarrow S\left(E, E^{H}\right)$ by $\psi([S, \alpha,(A)])=\left[A_{\alpha}\right]$. By Proposition $8.7, \Psi$ is well defined and injective.

Theorem 8.8. For any subgroup $H \leq G$, the map Ψ_{H} is a ring isomorphism.

Proof. Let $[S, \alpha,(A)],[T, B,(B)] \in A_{A Z}(H)$. Since $(A) \dot{+}(B)=(A \mp B)$, and $(A \dot{+}){ }_{\alpha} \dot{U} \beta \cong A_{\alpha} \dot{+} B_{\beta}$ (via the identity), we have $\psi([S, \alpha,(A)]+[T, \beta,(B)])$
$=\Psi([S \cup T, \alpha$ U $B,(A+B)])=\left[(A \dot{X}+B)_{\left.\alpha \dot{U}_{\beta}\right]}\right]=\left[A_{\alpha}\right]+\left[B_{\beta}\right]$
$=\Psi([S, \alpha,(A)])+\Psi([T, \beta,(B)])$. Now $\Psi([S, \alpha,(A)] \cdot[T, \beta,(B)])$
$=\Psi\left(\left[S x_{G / H} H^{T r} \alpha x_{G / H} B, \pi_{S}^{0}(A) \cdot \pi_{T}^{0}(B)\right]\right)$, where $\pi_{S}^{0}(A) \cdot \pi_{T}^{0}(B)$
$=\left(R_{S x_{G / H}}{ }^{T} \otimes_{R_{S}} A\right) \cdot\left(R_{S x_{G / H}}{ }^{T} \times{ }_{R_{T}}{ }^{B}\right)$

$=\left(A X_{R_{G / H}} B\right)$, by 8.6. (Note that $A \otimes R_{G / H} B$ is an $R_{S x_{G / H}} T^{T}$ algebra via the composition $R_{S x_{G / H}} \rightarrow R_{S} \otimes R_{G / H}{ }^{R} T$
$\rightarrow A\left(x R_{G / H} B\right)$. The identity map: $\quad(X \times)_{R_{G / H}} B_{a x_{G / H} B}$
$\rightarrow A \otimes R_{G / H} B$ is an $R_{G / H}$ algebra isomorphism. Thus,
$\left.\Psi[S, \alpha,(A)] \cdot[T, R,(B)])=\left[(A \otimes)_{R_{G / H}}^{B}\right)_{\left.\alpha x_{G / H}{ }^{\beta}\right]}\right]$
$\left.=\left[A_{\alpha} \times{\underset{R}{G / H}} B_{B}\right]=\left[A_{\alpha}\right]\left[B_{\beta}\right]=\Psi[S, a,(A)]\right) \cdot \Psi([T, \beta,(B)])$.
To see that Ψ is surjective, let $A \in \operatorname{SEP}\left(E, E^{H}\right)$ be simple, with $Z(A) \cong E^{J}$ for some subgroup $J \leq H$. Let $a: G / J \rightarrow G / H$ be projection, that is, $\alpha(g J)=g H$, all $g \in T$. Then, viewing A as an $R_{G / J}$-algebra via the $R_{G / H}$ isomorphism $R_{G / J} \cong E^{J}$, we have $A \in A Z\left(R_{G / J}\right)$. It follows that $\because([G / J, \alpha,(A)])=[A]$. Thus \because is surjective by Proposition 7.5

Following an almost identical proof, we obtain the final result of this section.

Theorem 8.9. Let $H \leq G$. Define a map $A_{B r}(H) \rightarrow B S\left(E, E^{H}\right)$ by $[S, \alpha,\{A\}] \rightarrow\left\langle A_{\alpha}\right\rangle$. Then this mapping is an isomorphism.

Conseguences of the Mackey Induction Lemma

Theorem 8.8 will permit us to apply the induction theory of Mackey-functors to rings $S\left(E, E^{H}\right)$, where $H \leq G$. However, we must first verify that restriction and induction for $A_{A Z}$ and S coincide.

Lemma 8.10. Let $H \leq G$, and set $L=E^{H}$. Let $\eta: G / H$ $\rightarrow G / G$ be the canonical map. Then the following diagrams both commute.
(a)

Proof. (a) It is convenient to identify $R_{G / G}$ with F. If $[S,(A)] \in A_{A Z}(G)$, and if $\pi_{S}: G / H \times S \rightarrow S$ is projection, then by Proposition 8.6, $\pi_{S}^{0}(A)=\left(R_{G / H \times S} \otimes R_{S}{ }^{A}\right)$ $=\left(R_{G / H} \times{ }_{F} A\right)$. Furthermore, if $\pi_{H}: G / H \times S \rightarrow G / H$ is
projection, then $\pi_{H *}: R_{G / H} \rightarrow R_{G / H \times S} \xlongequal{\cong} R_{G / H} \otimes{ }_{F} R_{S}$ is injection, $\pi_{H^{*}}(\gamma)=\gamma(x)$ all $\gamma \in R_{G / H^{*}}$. Thus, the identity map $R_{G / H} \times{ }_{F}^{A} \rightarrow\left(R_{G / H} \times{ }_{F}^{A}\right)_{\pi_{H}}$ is an $R_{G / H}$ algebra isomorphism. Therefore, $\Psi_{H} n_{*}([S,(A)])=\Psi_{H}\left(\left[G / H \times S, \pi_{H}, \pi_{S}^{0}(A)\right]\right)$ $=\Psi_{H}\left(\left[G / H \times S, \pi_{H},\left(R_{G / H} \times{ }_{F} A\right)\right]\right)=\left[\left(R_{G / H} \times F_{F}^{A)} \pi_{H}\right]\right.$ $=\left[R_{G / H} \otimes{ }_{F}^{A]}\right]_{L}=\left[L \otimes X_{F}^{A]}=\operatorname{res}_{F \rightarrow L}\left([A]_{F}\right)=\operatorname{res}_{F \rightarrow L^{\Psi}}([S,(A)])\right.$.
(b) Let $[S, \alpha,(A)] \in A_{Z}(H)$. Then $\Psi_{G} \eta^{*}([S, \alpha,(A)])$
$=\Psi_{G}([S,(A)])=[A]_{F}=\left[A_{\alpha}\right]_{F}=\operatorname{ind}_{L \rightarrow F}\left(\left[A_{\alpha}\right]_{L}\right)$
$=\operatorname{ind}_{L \rightarrow F}{ }_{H}^{Y}([S, \alpha,(A)])$, since $A \cong A_{\alpha}$ as F-algebras.
We are interested in studying $\operatorname{ker}\left(r e s_{F \rightarrow L}\right)$ and im (ind ${ }_{L \rightarrow F}$); it will be convenient to proceed more generally. Let M be any Mackey-functor $\hat{G} \rightarrow A B$, and let S be a G-set. Denote by $K_{M}(S)$ the kernel of the map $\left(n_{S}\right)_{*}$: $M(G)=M(G / G) \rightarrow M(S)$, and by $I_{M}(S)$ the image of $\left.i \eta_{S}\right) *:$ $M(S) \rightarrow M(G)$.

Lemma 8.11. (Induction lemma for Mackey-functors.) Let G be a finite group, and $M: \hat{G} \rightarrow A B$ a Mackey-functor. Then for any G-set S,
(a) $|G| \cdot\left(I_{M}(S) \cap K_{M}(S)\right)=0$,
(b) $\quad|G| \cdot M(G) \subseteq I_{M}(S)+K_{M}(S)$.

Proof. See Dress (1971, p. 64).
In particular, using the commutivity from Lemma 8.10, together with Theorem 3.6 ($A_{A Z}$ is a Green-functor), we obtain

Theorem 8.12. Let E / F be a finite Galois extension with Galois group G. Let $H \leq G$, and set $L=E^{H}$. Then
(a) $\operatorname{im}\left(i n \tilde{I}_{I \rightarrow F}\right) \cap \operatorname{ker}\left(\operatorname{res}_{F \rightarrow L}\right)=0$,
(b) $|G| \cdot S(E, F) \subseteq i m\left(\right.$ ind $\left._{L \rightarrow F}\right)+\operatorname{ker}\left(\operatorname{res}_{F \rightarrow L}\right)$.

Proof. Take $S=G / H$ in 8.11. We may drop multiplication by $|G|$ in (a) because $S(E, F)$ is free, hence torsion free, by.7.5. The rest is clear.

Corollary 8.13. Let L / F be a finite separable field extension, and let A and B be separable L-algebras. If $L(x)_{F} \cong \cong \mathcal{L}_{F} B$ as L-algebras, then $A \cong B$ as F-algebras. Proof. By a standard characterization of separable algebras over fields, we may write A and B as finite products of finite dimensional, simple L-algebras, where each simple algebra has as center a finite separable field extension of L. Since L/F is finite separable, it follows that there is a finite Galois extension E / F containing the centers of all of these simple algebras. Thus, A, $B \in \operatorname{SEP}(E, L)$. Consider $[A]_{F}-[B]_{F} \in S(E, F)$. Plainly, $\operatorname{ind}_{L \rightarrow F}\left([A]_{L}-[B]_{L}\right)=[A]_{F}-[B]_{F}$. Also, res ${ }_{F \rightarrow L}\left([A]_{F}-[B]_{F}\right)$
 L-algebras. Thus $[A]_{F}-[B]_{F} \in \operatorname{im}\left(i n d_{L \rightarrow F}\right) \cap \operatorname{ker}\left(r e s_{F \rightarrow L}\right)=0$, so that $[A]_{F}=[B]_{F}$. By 7.4(c), $A \cong B$ as F-algebras. Of course, this result is not true if A and B do not contain L in their centers. For example, take $F=R$,
$L=C, A=M_{2}(R)$ and $B=H$ (quaternions). Then $A \neq B$, but $\mathbb{C}(x) \cong M_{2}(\mathbb{C}) \cong \mathbb{C}(x)$, as \mathbb{C}-algebras. $8.12(b)$ yields a much stranger consequence.

Corollary 8.14. Let E / F be a finite Galois extension. Suppose that A is a separable F-algebra whose center is isomorphic with a finite product of subfields of E / F, that is, $A \in \operatorname{SEP}(E, F)$. Then there are F-algebras B, $C \in \operatorname{SEP}(E, F)$ with $E\left(X{ }_{F}{ }^{B} \cong E\left(X{ }_{F} C\right.\right.$ as E-algebras, and there are algebras $Y, Z \in \operatorname{SEP}(E, E)$ (that is, finite products of central simple E-algebras) such that $A \dot{+} \ldots+A+B+Y$ $\cong C \dot{Z}$ as F-algebras, where $[E: F]$ copies of A appear in the left hand product.

Proof. Take $H=\{1\}$ in Theorem 8.12, so that $I=E$. Set $n=[E: F]=|\operatorname{Gal}(E / F)|$. Then $n[A]_{F} \in \operatorname{im}\left(\right.$ ind $\left._{E \rightarrow F}\right)$ $+\operatorname{ker}\left(\right.$ res $\left._{F \rightarrow E}\right)$, so that $n[A]_{F}=\operatorname{ind}_{E \rightarrow F}\left([Z]_{E}-[Y]_{E}\right)+[C]_{F}$ $-[B]_{F}$, where $[C]_{F}-[B]_{F} \in \operatorname{ker}\left(\right.$ res $\left._{F \rightarrow E}\right)$, and $\quad[Z]_{E}-[Y]_{E}$ $\in S(E, E)$. Thus, $n[A]_{F}+[Y]_{F}+[B]_{F}=[Z]_{F}+[C]_{F}$. Using 7.4(c), this translates to the desired result.

It is worth mentioning that results similar to 8.10 and 8.12 hold upon replacing $A_{A Z}$ by $A_{B r}$ and S by BS. However, these results tell us nothing new, so we will not formulate them precisely.

CHAPTER 9

THE BRAUER RINGS OF Q_{p} AND Q

We are ready to combine the results of the preceeding chapters to determine the structure of the ring $2 B S\left(E, \Omega_{p}\right)$ $=0(X) \mathbb{Z}^{B S}\left(E, Q_{p}\right)$, for a finite Galois extension E of the p-adic rationals \varnothing_{p}. We shall begin by interpreting normality for the functor $F_{B r}$.

Normal Algebras

The following definition was first given by Eilenberg and MacLane (1948).

Definition 9.1. Let F be a field, and let L be a finite separable field extension of F. The central simple L-algebra A is normal over F if every F-automorphism of L can be extended to an F-algebra automorphism of A.

As we shall see, if L is a finite separable extension of Q_{p}, then every central simple L-algebra is normal over Q_{p}. However, non-normal algebras exist.

For example, let $F=Q, L=Q\left(v^{\prime} \overline{2}\right)$, and let A be the generalized quaternion algebra $\left(\frac{-1,-\sqrt{ } 2}{L}\right)$. Thus, $A=L \cdot l \bigoplus L \cdot i \bigoplus L \cdot j \in L \cdot k$, where $i^{2}=-1, j^{2}=-\sqrt{2}$, and $i j=-j i=k$. Define $\sigma: L \rightarrow L$ by $\sigma(\sqrt{2})=-\sqrt{2}$ and suppose
σ has an extension to an F-algebra automorphism ϕ of A. Set $i_{0}=\phi(i), j_{0}=\phi(j)$, and $k_{0}=\phi(k)$. Since ϕ is F-linear, the set $\left\{1, i_{0}, j_{0}, k_{0}\right\}$ is linearly independent over F, from which it follows that $A=L \cdot 1 \in L \cdot i_{0}$ $\oplus \operatorname{Ir} \mathrm{j}_{0} \ominus \mathrm{~L} \cdot \mathrm{k}_{0}$. However, $\mathrm{i}_{0}^{2}=-1, \quad j_{0}^{2}=\sqrt{2}$, and $i_{0} j_{0}$ $=-j_{0} i_{0}=k_{0}$, so that $A \cong\left(\frac{-1, \sqrt{2}}{L}\right)$, that is $\left(\frac{-1,-\sqrt{2}}{L}\right)$ $\cong\left(\frac{-1, \sqrt{2}}{L}\right)$. This isomorphism is impossible since -1 is not the norm of any element of $L(\sqrt{-1})$ to L, that is, $-1 \notin N_{L(\sqrt{-1}) / L}(L(\sqrt{-1}))$.

The importance of normal algebras to us is indicated by the following proposition.

Proposition 9.2. Let E / F be a finite Galois extension, with $G=\operatorname{Gal}(E / F)$. Let $S \in \hat{G}$ be transitive, and let $\{A\} \in \operatorname{Br}\left(R_{S}\right)$. Then $\{A\}$ is a normal element of $F_{B r}(S)$ if and only if A is a normal R_{S}-algebra over F.

Proof \Rightarrow). Let $\alpha \in \operatorname{Aut}_{F}\left(R_{S}\right)$. We must show that α can be extended to A. By Proposition 8.2, we may find $\phi \in \operatorname{Aut}_{G}(S)$ with $\phi_{*}=a$. Since $\{A\}$ is normal, it follows that $\phi^{0}(\{A\})=\{A\}$. But $\phi^{0}(\{A\})=\left\{R_{S} \otimes R_{S} A\right\}$, where R_{S} is considered as an R_{S}-algebra via α, that is, $X \cdot y$ $=x_{\alpha}(y)$, for $x, y \in R_{S}$. By counting dimensions, there is an R_{S}-algebra isomorphism $\psi: R_{S} \bigotimes_{R_{S}} A \rightarrow A$. Define $\gamma: A$ $\rightarrow A$ by $\gamma(d)=\psi(I \times d)$, all $d \in A$. If $r \in R_{S}$, then
$\gamma(r d)=\psi(1 \times r d)=\psi(\alpha(r) \times d)=\psi(\alpha(r)(1 \times d))$
$=\alpha(r) \psi(1 \times d)=\alpha(r) \gamma(d)$. Since α is $F-1$ linear, γ is an F-algebra isomorphism. Taking $d=1$ yields $y(r)=\alpha(r)$ all $r \in R_{S}$, so γ extends α.
\Leftrightarrow Let $\phi \in \operatorname{Aut}_{G}(S)$. We must show that
$\{A\}=\phi_{0}(\{A\})=\left\{R_{S} \times X_{R_{S}} A\right\}$, where R_{S} is considered as an R_{S}-algebra via ϕ_{\star}, as above. Since $\phi_{\star} \in A u t_{F}\left(R_{S}\right)$, the normality of A implies the existence of $\alpha \in A u t_{F}(A)$ such that $\left.\alpha\right|_{R_{S}}=\phi_{*} \cdot \quad$ The map $\psi: R_{S} \circledast X_{S} A \rightarrow A$, given by $\psi(r \times d)=\phi_{*}^{-1}(r) \cdot d$, is a well defined F-algebra isomorphism. Therefore, $\alpha \circ \psi: R_{S} \times R_{S} A \rightarrow A$ is an R_{S}-algebra isomorphism, showing $\left\{R_{S} \times R_{R_{S}} A\right\}=\{A\}$, as needed.

The Ring $B S\left(E, \ell_{p}\right)$

For a prime $p \in \mathbb{Z}$, let Q_{p} denote the completion of Q at the p-adic valuation. The next result shows that all finite dimensional simple Q_{p}-algebras are normal. It is due to Janusz (1978), and the reader may refer to this paper for the proof.

Proposition 9.3. Let $0 \neq p \in \mathbf{z}$ be a prime. For $i=1$, 2, let L_{i} be a finite extension of Q_{p}, and let A_{i} be a central simple L_{i}-algebra. If A_{1} and A_{2} are isomorphic as rings, then inv $_{1}=$ inv $_{2}$.

This proposition clearly also holds for $p=\infty$, that is, $\phi_{p}=R$. We remark that the notation inva for a central simple L-algebra A denotes its Hasse invariant. For a discussion of the properties of this invariant see Pierce (1982). The most important fact for us is that the class of the algebra A in $B r(L)$ is completely deterinined by its Hasse invariant.

Corollary 9.4. Let $0 \neq p \in \mathbf{Z}$ be a prime, and let L be a finite extension of \mathbb{R}_{p}. Then every central simple Lalgebra is normal over Q $_{p}$.

Proof. Let A be a central simple L-algebra, and let $\alpha \in A u \theta_{\emptyset_{p}}(L)$. Define an L-algebra B to be A as a ring, with I-algebra structure given by $\ell \cdot b=a(l) b$, all $\ell \in L$, $b \in B=A$. Then B is a central simple L-algebra, and $B \cong A$ as rings (in fact as Q_{p}-algebras). By 9.3, A and B yield the same class in $B r(L)$. Since $\operatorname{dim}_{L} A=\operatorname{dim}_{L} B$, we have $A \cong B$ as L-algebras. Let $\phi: A \rightarrow B$ be an $L-$ algebra isomorphism. Using the Q_{p}-algebra isomorphism $i d: B \rightarrow A$, we obtain the Q_{p}-algebra isomorphism $Y=i d \circ 0:$ $A \rightarrow A$. Then, if $2 \in L, \gamma\left(\ell I_{A}\right)=\phi\left(2 I_{A}\right)=\ell \cdot \phi\left(I_{A}\right)$ $=\alpha(2) 1_{A^{\prime}}$ thus γ extends a.

Corollary 9.5. Let E be a finite Galois extension of Q_{p}, with $G=\operatorname{Gal}\left(E / \Omega_{p}\right)$. Then every transitive G-set is normal over F_{Br}.

Proof. This follows directly from 9.2 and 9.4.

A mildly surprising result follows from our work. As shown by Eilenberg and MacLane (1948, Corollary 7.3), if E / F is cyclic, then any central simple E-algebra which is normal over F can be obtained by extension of scalars from a central simple F-algebra. Combining this with Corollary 9.4 we obtain the following.

Corollary 9.6. Let $0 \neq p \in \mathbf{Z}$ be a prime, and suppose that E / Q_{p} is a finite cyclic Galois extension. Then the canonical homomorphism $B R\left(Q_{p}\right) \rightarrow \operatorname{Br}(E)$ is surjective.

Theorem 9.7. Let E be a finite Galois extension of the p-adic field Q_{p}, and let $G=G a l\left(E / Q_{p}\right)$. Let $n=|P(G)|$ be the number of conjugacy classes of subgroups of G. Then $Q B S\left(E, Q_{p}\right) \cong \Pi_{n} Q(Q / \mathbb{Z})$, where the right hand side is a product of n copies of the group algebra $Q(Q / Z)$,

Proof. By Theorem 8.9, $Q B S\left(E, D_{p}\right) \cong Q A_{B r}(G)$. Since every transitive G-set is normal over $F_{B r}$, Theorem 5.12 implies that $Q_{B r}(G) \cong \prod_{a \in P} \not A B r\left(R_{S}\right)$. However, the Brauer group of a local field is Q / \mathbb{Z}, thus $B r\left(R_{S_{a}}\right) \cong \varnothing / \mathbf{Z}$ for all a $\in P$. The result follows.

Passing to direct limits we can state

Proposition 9.8. Let \bar{Q}_{p} denote the algebraic closure of Q_{p}. Then $Q B S\left(\bar{\delta}_{p}, Q_{p}\right)$ is von Neumann regular.

Proof. By Theorem 8.9 and Corollary 5.13, $2 B S\left(E, Q_{p}\right)$ is von Neumann regular for each finite Galois extension E / Q_{p}. The proposition follows from Proposition 7.9 and the fact that the property of being von Neumann regular is preserved under the taking of direct limits.

The Ring $B S(E, Q)$

Let E be a finite Galois extension of \varnothing. If $p \neq 0$ is an integral prime, then p factors in O_{E} (the ring of algebraic integers of E) as a product $\left(P_{1} \ldots P_{g}\right)^{e}$. Since each completion $E_{P_{i}}$ is the compositum of E (embedded in $E_{P_{i}}$, and Q_{p}, the extensions $E_{P_{i}} / \theta_{p}$ are all Galois. We introduce the notation E_{p} to denote the compositum over Q_{p} of the Galois extensions $E_{D_{1}}, \ldots, E_{P_{g}}$ (E_{p} is the splitting field over \varnothing_{p} of a generating polynomial for the extension $E / Q)$. If $p=\infty$ is the infinite prime, set $E_{\infty}=\mathbf{R}$ when all of the infinite primes of E are real, otherwise set $E_{\infty}=\mathbb{C}$. We shall use this notation in attempting the computation of $B S(E, Q)$. We first recall a basic number theory result. Its proof may be found, for example, in Narkiewicz (1974, Proposition 6.1).

Proposition 9.9. Let L be a finite extension of 2 with ring of integers O_{L}.
(a) Let $0 \neq p \in \mathbb{Z}$ be a prime, and write $p O_{L}=P_{I} e_{I}$ $\cdot{ }^{P_{g}}{ }_{g}$ where the P_{i} are distinct prime of O_{L}. Then there is a Q_{p}-algebra isomorphism
$L(x) Q_{Q}{ }^{2}{ }^{L_{P_{1}}}+\ldots+L_{P_{g}}$.
(b) If the infinite prime of Q factors into r_{1} real
and r_{2} complex infinite primes in L (so that
$\left.r_{1}+2 r_{2}=[L: \varnothing]\right)$, then $L\left(X Q_{Q}^{R} \cong \Pi_{r_{1}} R+\Pi_{r_{2}} \mathbb{C}\right.$.
For a Galois extension e of Q_{p} we shall use the notation []$_{p}$, respectively $\left\rangle_{p}\right.$, to denote elements of $S\left(E, Q_{p}\right)$, respectively $B S\left(E, Q_{p}\right)$.

Proposition 9.10. Let E / \varnothing be a finite Galois extension. For each prime p (possibly infinite) of Q define a map $\theta_{p}: S(E, Q) \rightarrow S\left(E_{p}, \theta_{p}\right)$ by $\theta_{p}([A])=\left[A \otimes Q_{Q} Q_{p}\right]_{p}$. Then
(a) θ_{p} is a ring homomorphism.
(b) θ factors through the projection of S to BS. That is, there is a ring homomorphism $\overline{\mathrm{G}}_{\mathrm{p}}: B S(E, \varnothing) \rightarrow B S\left(E_{p}, \theta_{p}\right)$ such that the diagram

commutes.

Proof. (a) If $A \in \operatorname{SEP}(E, Q)$ is simple, we may assume without loss of generality that $Z(A)=L$, where $\emptyset \subseteq L \subseteq E$.
 $\cong \prod_{i=1}^{g} A_{\mathrm{X}} \mathrm{L}_{\mathrm{P}_{i}}$ as \otimes_{p}-algebras, by Proposition 9.9. Since each $A \otimes L_{L_{i}}$ is a central simple $L_{P_{i}}$-algebra, and $\emptyset_{p} \subseteq L_{P_{i}}$ $\subseteq E_{p}, A X_{Q^{Q}} Q_{p}$ is an element of $\operatorname{SEP}\left(E_{p}, \varnothing_{p}\right)$. It follows from this, together with proposition 7.5, that θ_{p} is a well defined group homomorphism. If also $B \in \operatorname{SEP}\left(E, Q_{p}\right)$, then the Q_{p}-isomorphism $\left(A \otimes Q_{Q} B\right) \otimes Q_{Q} Q_{p}$
$\cong\left(A \times Q_{Q}\right) \times Q_{p}\left(B \times Q_{Q} \mathscr{Q}_{p}\right)$ shows that θ_{p} is a ring homomorphism. These same arguments work for $p=\infty$.

$$
\begin{aligned}
& \text { (b) Let } 0<n \in Z . \text { Then } \theta_{p}\left(\left[M_{n}(Q)\right]-[Q]\right) \\
&= {\left[M_{n}\left(\otimes_{p}\right)\right]_{p}-\left[\Omega_{p}\right]_{p} \cdot \operatorname{Part}(b) \text { then follows from part (a) } }
\end{aligned}
$$ and Corollary 7.7.

Patching together the homomorphism of Proposition
9.10 over all primes p, we obtain ring homomorphisms

$$
\theta=\left(\theta_{p}\right): S(E, Q) \rightarrow \prod_{p} S\left(E_{p}, \theta_{p}\right),
$$

and

$$
\bar{\theta}=\left(\theta_{p}\right): B S(E, \phi) \rightarrow \prod_{p}^{\Pi B S}\left(E_{p}, \theta_{p}\right)
$$

The image and kernel of $\bar{\theta}$ are the subject of the remainder of this chapter.

For each prime p (possibly $p=\infty$), let G_{p} $=\operatorname{Gal}\left(E_{p}, Q_{p}\right)$. Then $B S\left(E_{p}, Q_{p}\right) \cong A_{B r}\left(G_{p}\right)$. By earlier remarks, the Burnside ring of $G_{p}, A\left(G_{p}\right)$, can be identified as a subring of $A_{B r}\left(G_{p}\right)$, and thus as a subring of $B S\left(E_{p}, \varnothing_{p}\right)$. It is easy to see that $A\left(G_{p}\right)$ correponds to the subring of $B S\left(E_{p}, \emptyset_{p}\right)$ consisting of all sums of fields $A\left(G_{p}\right)=\left\{\sum_{i}\left\langle L_{i}\right\rangle_{p}: n_{i} \in Z, \quad Q_{p} \subseteq L_{i} \subseteq E_{p}\right\}$.

Proposition 9.11. Let $\bar{\ni}: B S(E, Q) \rightarrow \prod_{\mathrm{P}} B S\left(E_{p}, \varnothing_{p}\right)$ be the ring homomorphism given above. Then im $\bar{\theta}$ is contained in the restricted direct product of the rings $B S\left(E_{p}, \varnothing_{p}\right)$ over the subrings $A\left(G_{p}\right)$.

Proof. The statement of the proposition is equivalent with showing that given any $x \in B S(E, Q)$, one has $\theta_{p}(x) \in A\left(G_{p}\right)$ for all but finitely many p. Let $A \in \operatorname{SEP}(E, Q)$ with A simple, where without loss of generality, $Z(A)=L$, with $Q \subseteq L \subseteq E . \quad$ Now, $A \otimes_{L} L_{P} \cong M_{n}\left(L_{P}\right) \quad(n=\operatorname{DegA})$ for all but finitely many primes P of L (see Pierce (1982, Proposition 18.5)), and there are at most finitely many primes of Q lying under these exceptional primes. If p is not one of them then $A \otimes Q_{Q} Q_{p} \cong \prod_{i=1}^{g} A(X)_{L} L_{P_{i}} \cong \prod_{i=1}^{g} M_{n}\left(L_{P_{i}}\right)$, so that
$\left.\bar{\partial}_{p}(\langle A\rangle)=\sum_{i=1}^{q}\left\langle M_{n}\left\langle L_{p_{i}}\right)\right\rangle\right\rangle_{p}=\sum_{i=1}^{q}\left\langle L_{p_{i}}\right\rangle_{p} \in A\left(G_{p}\right)$. Since $B S(E, Q)$ is spanned by the classes $\langle A\rangle$, where A is simple, the result follows from the additivity of \bar{E}.

We wish to look at ker $\bar{\theta}$. For an algebraic number field K, let K_{A} denote its adele ring. We need a characterization of number fields with isomorphic adele rings.

Proposition 9.12. Let K and L be finite extensions of Q. Denote by V_{K} the set of non-zero primes of K (including the infinite primes), and similarly for L. Then the following are equivalent.
(I) K_{A} and L_{A} are (topologically) isomorphic.
(2) There is a bijection ψ of V_{K} onto V_{L} such that given any prime P of K, P and $\psi(P)$ lie over the same prime p of Q, and $K_{p} \cong L_{\psi(P)}$ as Q_{p}-algebras.
(3) For every prime p of Q, there is a Q_{p}-algebra isomorphism $k \times Q_{Q} \xlongequal{\cong} L \times Q_{Q}^{Q}$.
Proof. The equivalence (1) $\Leftrightarrow(2)$ is given in Komatsu (1978). The equivalence (2) © (3) follows directly from Proposition 9.9 and the uniqueness statement of Wedderburn's theorem.

Corollary 9.13. Let E / Q be a finite Galois extension, and suppose K and L are subfields of E. Then $\langle K\rangle-\langle L\rangle$ ϵ ker $\bar{\theta}$ if and only if $K_{A} \cong L_{A}$.

Proof. Since K and I are commutative, $\langle K\rangle-\langle L\rangle$ $\epsilon \operatorname{ker} \bar{\theta}$ iff $[K]-[L] \in \operatorname{ker} \theta$ iff $K \otimes Q_{Q}^{Q} \cong L\left(X Q_{Q} \cong\right.$ for all primes p of Q. Apply the previous proposition.

At this point the question naturally arises to find nonisomorphic number fields with isomorphic adele rings. An infinite list of such examples was given by Komatsu (1978). We state his result for completeness.
proposition 9.14. Let m be a square free integer such that $m \neq \pm 1, \pm 2$, and $m \equiv 2,7,14,15(\bmod 16)$. Let n be an integer with $n \geq 3$, and set $s=2^{n}$. Put $K=\emptyset(\bar{s} \bar{m})$ and $L=g(\sqrt{2} \times s \bar{m})$. Then $K_{A} \cong L_{A}$, but K and I are not isomorphic.

We remark that it is an interesting and open problem to classify radical extensions of by the isomorphism type of their adele rings.

If we let I be the ideal of $B S(E, \varnothing)$ generated by the set $\left\{\langle K\rangle-\langle L\rangle: K_{A} \cong L_{A}\right\}$, then the above shows that $I \subseteq \operatorname{ker} \vec{\exists}$. If $[E: Q] \leq 6$, or if E / Q is abelian, then the work of Perlis (1977) establishes that $I=0$. Hence the equality $I=\operatorname{ker} \overline{9}$ would imply the injectivity of \vec{E} in
these cases. However, it is not known, even when the extensiors E / Q is abelian, whether the inclusion I \subseteq ker $\bar{\theta}$ is proper or not. Not wishing to conjecture the wrong result, we finish our work here, leaving the foregoing problem unsolved.

REFERENCES

Bass, H. 1968. "Algebraic K-Theory." W. A. Benjamin, Inc., New York-Amsterdam.

Chase, S. U., D. K. Harrison and A. Rosenberg. 1965. "Galois Theory and Cohomology of Commutative Rings." Mem. Amer. Math. Soc. 52.

Dress, A. 1969. "A Characterization of Solvable Groups." Math. Zeitschr., Vol. 110, pp. 213-217.

Dress, A. 1971. "Notes on the Theory of Representations of Finite Groups. Part I: The Burnside Ring of a Finite Group and some AGN-Applications." Lecture Notes, Bielefeld.

Eilenberg, S., S. MacLane. 1948. "Cohomology and Galois Theory. I. Normality of Algebras and Teichmuller's Cocycle." Trans. Amer. Math. Soc., 64, pp. 1-20.

Gluck, D. 1981. "Idempotent Formula for the Burnside Algebra with Applications to the p-Subgroup Simplicial Complex." Ill. J. of Math, Vol. 25, No. 1, pp. 63-67.

Janusz, G. J. 1978. "Automorphism Groups of Simple Algebras and Group Algebras." Representation Theory of Algebras (Proc. Conf. Temple Univ., Philadelphia, Pa., 1976). Lecture Notes in Pure and Applied Mathematics, Vol. 37, pp. 381388, Dekker, New York.

Komatsu, K. 1978. "On the Adele Rings and Zeta-Functions of Algebraic Number Fields." Kodai Math. J., Vol. 1, pp. 394-400.

Kïchler, M. 1970. "Frobenius-, Burnside-, and MackeyFunctors." Open House for Algebraists, Aarhus Universitet, Denmark. Various Publications Series No. 17, pp. 72-84.

MacLane, S. 1971. "Categories for the Working Mathematician." Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, Berlin-Heidelberg-New York.

Montgomery, S. 1976. "The Jacobson Radical and Fixed Rings of Automorphisms." Comm. Alg., Vol. 4, No. 5, pp. 459-465.

Narkiewicz, W. 1974. "Elementary and Analytic Theory of Algebraic Numbers." PWS-Polish Scientific Publishers, Warszawa.

Passman, D. S. 1971. "Infinite Group Rings." Pure and Applied Mathematics, Vol. 6. Marcel Decker, New York.

Perlis, R. 1977. "On the Equation $\zeta_{K}(s)=\zeta_{K}$ (s)." J. of Number Theory, Vol. 9, pp. 342-360.

Pierce, R. S. 1982. "Associative Algebras." Graduate Texts in Mathematics, Vol. 88, Springer-Verlag, Berlin-Heidelberg-New York.

Rotman, J. 1965. "The Theory of Groups - An Introduction." Allyn and Bacon, Inc., Boston-London-SydneyToronto.

Solomon, L. 1967. "The Burnside Algebra of a Finite Group." J. Combinatorial Theory, Vol. 2, pp. 603-615.

Villamayor, O. E. 1958. "On the semisimplicity of Group Algebras." Proc. Amer. Math. Soc., Vol. 9, pp. 621-627.

