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Tiger got to hunt, 

Bird got to fly; 

Man got to sit and wonder, "why, why, why?" 

Tiger got to sleep, 

Bird got to land; 

Man got to tell himself he understand. 

-The Books of Bokonon 
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ABSTRACT 

Let G be a finite group. Given a contravariant, 

product preserving functor F:G-sets ~ AB, we construct a 

Green-functor ~:G-sets + CRNG which specializes to the 

Burnside ring functor when F is trivial. ~ permits a 

natural addition and multiplication between elements in the 

various groups F(S), S E G-sets. If G is the Galois 

group of a field extension L/K, and SEP denotes the 

category of K-algebras which are isomorphic with a finite 

product of subfields of L, then any covariant, product 

preserving functor p:SEP + AB induces a functor F ·G + AB p • ' 

and thus the Green-functor AP may be obtained. We use this 

observation for the case p = Br, the Brauer group functor, 

and sho~ that ABr(G/G) is free on K-algebra isomorphism 

classes of division algebras with center in SEP. We then 

interpret the induction theory of Mackey-functors in this 

context. For a certain class of functors F, the structure 

of ~ is especially tractable; for these functors we de­

duce that qJ@?l~ (G/G) ~ ITqJF (S), where the product is over 

isomorphism class representatives of transitive G-sets. This 

allows for the computation of the prime ideals of AF(G/G), 

and for an explicit structure theorem for ABr' when G is 

vii 
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the Galois group of a p-adic field. We finish by considering 

the case when G = Gal(L/~), for an arbitrary number field 

L. 



CHAPTER 1 

INTRODUCTION 

Let L/K be a finite Galois field extension, with 

Galois group G. Let C(L,K) be the category of K-algebras 

which are isomorphic with a finite product of subfields of 

L. We may then view the Brauer group as a covariant, ad-

ditive functor Br:C(L,K) + AB, where AB denotes the 

category of abelian groups. Moreover, tensor product over 

K induces a multiplication among elements of the various 

groups Br(A), A E C(L,K). Since C(L,K) is anti-equivalent 

with the category G of finite G-sets, it is natural to ask 

if, given any contravariant functor F:G + AB which trans-

forms sums into products, there is a tensor product-like 

multiplication among elements of the groups F(S), S E G. 

We outline such a construction (the details will be carried 

out in Chapter 3). 

With G and F as above, for a G-set S define the 

category (G,S,F) to have as objects all triples (T,a,x), 

where T E G, a:T ~ S is a G-map, and x E F(T). A 

morphism from (T,~,x) to (V,S,y) is a G-map ¢:T + V 

such that a= 3~, and F(¢) (y) = x. Then (G,S,F) has 

direct sums and pullbacks, so we define ~(S) to be the 

1 
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associated Grothendieck ring K
0

(G,S,F). Multiplication in 

~{S) essentially corresponds to the desired tensor product. 

For example, if F(T) = {1} for every G-set T, 

then ~{*) is the Burnside ring functor. In general, 

~{*) is a Green-functor, and is, in particular, the left­

adjoint to the natural forgetful functor M + M* (see 

Chapter 4). If we apply this construction to the composite 

A Br . 
functor G + C(L,K)--+ AB, we obta~n the Green-functor 

ABr{*). Especially, ABr(G) is free, with a basis cor­

responding to K-algebra ismorphism classes of division 

algebras with center in C(L,K), where addition and multi-

plication are induced from direct product and tensor product 

(over K) respectively. The structure of ABr(G) can often 

be recovered from the following more general result. 

For any G-set S, and a E AutG(S), the group auto­

morphism F(a) induces a ring automorphism of the group 

algebra ~F{S). Let w5 denote the set of ring automorph­

W 
isms of QF{S) obtained in this way. Let OF(S) S denote 

the fixed ring. Our main structure theorem asserts that 

\'1 
~@?l AF (G) ~ IT~F (S) S 

the product being over isomorphism classes of transitive G-

sets (see Chapter 5). Moreover, this isomorphism embeds 



~(G) into IT~F(S), which then allows us to describe the 

pr-:Lrne ideals of ~(G) (see Chapter 6) . 

Chapter 7 is concerned with an alternate description 

of the ring ABr(G), which is much more manageable for ap­

plications. In particular, by applying the Mackey induction 

lemma we obtain the following cancellation theorem. If A 

and B are separable L-algebras such that A@ KL ~ B@ KL 

as L-algebras, then A ~ B as K-algebras. 

We conclude by computing Q@ ABr (E,Qp), when E 

is a Galois extension of the p-adic field Qp. This allows 

us to consider the ring ABr(N,Q), when N is a Galois 

extension of ~- However, its computation leads us to the 

thorny problems of the isomorphism of adele rings, and the 

arithmetic equivalence of two number fields. These active 

areas of current research go beyond the intentions of this 

dissertation. Hence we must be content with an incomplete 

structure theorem for ABr(N,~). 

Finally, we must warn the reader that the proofs of 

many early results are quite computational. Most of the de­

tails are not omitted. Repeatedly the author has suppressed 

the temptation to skip over straight-forward proofs, often 

leaving a tedium of technicalities in the wake. The feeling 

is that this gives the reader a fair choice in the selection 

of proofs he wishes to work through, and the knowledge that 

3 



someone, at least, has skinned his knuckles in checking all 

of the details. 
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CHAPTER 2 

PRELIMINARY REMARKS 

Throughout this chapter G will denote a fixed 

finite group. A G-set is a finite set on which G acts from 

the left. The category of all finite G-sets will be denoted 

by G; its morphisms are set maps which commute with the 

action of G. Our objectives here are to define certain 

rings and functors associated with the category G, and to 

set up some notation which will be useful to us throughout 

this dissertation. 

The Burnside Ring 

The set of isomorphism classes of finite G-sets be-

comes a commutative semi-ring with addition induced by dis-

joint union and multiplication by cartesian products. The 

Grothendieck ring constructed from this semi-ring is called 

the Burnside ring of G; it will be denoted A(G). Thus, 

elements of A(G) are formal differences [S] - [T] where 

" s, T E G. Moreover, [ S ] + [ T ] = [ S U T ] and [ S ] [ T ] 

= [S X T]. 

Let P = P(G) denote the set of all conjugacy 

classes of subgroups of G. For each bE P, pick a 

representative Hb of b, and let Sb denote the transitive 

5 
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G-set of cosets modulo For a, b, c E P, let v a,b,c 

be the number of orbits in Sa x sb, under the diagonal 

action of G, which are isomorphic with Sc as G-sets. The 

following proposition collects some well known properties of 

A (G). 

Proposition 2 .1. (a) Additively, A(G) is free on the 

set {[Sa] :a E P}, that is, { S :a E P} 
a is a complete set 

of representatives of isomorphism classes of transitive 

G-sets. 

(b) If S, T E G. then [S] = [T] if and only if 

S ~ T as G-sets. 

the 

(c) 

v a,b,c 

For a, b E P, 

are structure constants for 

Thus 

A (G). 

The set P has a natural partial ordering, where we 

set a < b precisely when Ha is subconjugate to Hb 

(denoted Ha ~ Hb) . As in Solomon (1967) , OA (G) = 0 @?lA (G) 

has primitive idempotents {ea:a E P}, where 

e = L Ab [Sb] 
a b<a ,a 

for suitable constants Ab E qJ. ,a We shall 

define A = 0 if b 1 a so that we may write b,a 

e = I A b [ sb 1 • It follows that I e = lA (G) I 
and 

a bEP ,a cEP c 

eaeb = 0 abea' for all a, b E P. We summarize some known 

results on the constants A a,b and v a,b,c . 
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Proposition 2.2. (a) for any v -1 a E P, = A a,a,a a,a 

= [NG (Ha) :Ha]. 

(b) For any a E P, IGI ea E A (G) . Thus IGI . A b,a 

E z for all a, b E P. 

(c) For any a, b, c E pI V = 0 unless both a,b,c 

c < a and c < b. 

We just remark that 2.2(b) can be strengthened to 

the statement jNG(Ha) I • ea E A(G), for any a E P, by 

the idempotent formula of Gluck (1981). However, we will 

have no use for this extra information. For brevity we shall 

denote v = v a a,a,a and v = v , a,b a,b,b all a, b E P. 

Fundamental to our later work are the following propositions 

relating the constants v a,b,c and 

Proposition 2.3. Let a < bE P. Then for all d E P, 

I A v = o. 
cE P c , b a , c , d 

Proof. Note that 0 = ea • eb 

= c~dAc,aAd,b[Sc] [Sd] 

= ~ A J- V [S ] 
d c,a d,b c,d,e e c, , e 

By 2.l(a) it follows that 

( *) I A Ad bv d = 0 for all e E P. 
d 

c,a , c, ,e c, 



8 

We establish the required formula by induction on a E P 

with respect to the partial order <. If a= {1} (the 

unique minimal element) then since A. = 0 c,a if c f. a, ( *) 

A. ~ 0 a,a becomes >.. I>..d bv d = o, a,ad , a, ,e all e E P. Since 

by 2.2(a), this starts the induction. Assume that a ~ {1}, 

and that whenever c < a, and e E P, then I>.. v d d,b c,d,e 

= 0. By (*), for any e E P we have 

0 = A I>.. v + I A (LA v ) a,ad d,b a,d,e c<a c,a d d,b c,d,e 

= A I>.. v a,ad d,b a,d,e (by induction) . 

Since A. ~ 0, I>.. V = 0 for all e E P, as a,a d d,b a,d,e 

claimed. 0 

Proposition 2.4. Let a, b E P with b I a. Then 

[Sa]eb = 0. 

Proof. Note that [Sa]eb = [sa]ebeb 

= 

= 

Thus it suffices to show [Sd]eb = 0 whenever c < b and 

d < a, c. The condition b I a then forces d < b, so we 
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may as well assume a < b to begin with. Then, by the above 

computation and Proposition 2.3, 

=),(LAc bv d) [Sd]eb = 0. 
d c ' a,c, 

Proposition 2.5. (a) For any -1 
a E P, ea = Va [Sa]ea. 

(b) If a, c E P, then I Ab v b = A v . bEP ,a a, ,c c,a a 

= L Ab [ Sb] e 
b 

,a a 
<a 

= v~1 [Sa]ea' by 2.2{a). 

{b) By (a), ea = v~1 [sa]ea 

= v~l~Ab,a[Sa] [Sb] 

= v-1 I A v [s 1 a b b,a a,b,c c ,c 

= ~ (V~l~Ab,ava,b,c) [Sc] · 

Comparing coefficients and applying 2.l(a) yields 

A = v- 1 \~ v 
c,a a s'b,a a,b,c 

0 

as claimed. C 
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We must indicate some notational conventions in the 

category G. We shall always use a subscripted K to de-

note an inclusion map in G. For example, if S, T E G we 

may denote by K5 the canonical inclusion of S into 
. . 

S U T. If a E P, we may use the notation K :S + S U T. a a a 

Similarly, we shall always use a subscripted rr to denote a 

projection map in G. Thus one might see rr8 :s x T + S, or 

rr :S x T + S . The point is that the subscript will always a a a 

be sufficient for the reader to deduce the map, explicit 

mention of domains and ranges will seldom be given. 

Mackey-Functors and Frobenius-Functors 

Various equivalent definitions of Mackey-functors, 

Frobenius-functors and Green-functors have appeared over the 

last few years. Our definitions roughly coincide with those 

of Kuchler (1970). 

Definition 2.6. A Mackey-functor on G is a bifunctor 

"' M = (M*,M*):G + AB, where M* is covariant, M* is con-

travarient, M* and M* agree on objects, such that the 

following conditions are fulfilled by M. 

(a) If 



(b) 

"' 
is a. pullback diagram in G, then the diagram 

commutes. 

If 

M(X) 
M*(1jJ

2
) 

M(X 2 ) 

M*(Wl)l l (M*($2) 

M (Xl) M(Y) 
M*(¢1 ) 

8 2 E G with inclusions K. :8. + 
~ ~ 

then the homomorphisms M*(Ki) :M(81 U 8 2 ) 

duce an isomorphism M*(Kl) x M*(K2 ) :M(81 

+ M (8l) X M (8 2 ) . 

. 
8

1 
u 8 2 , 

+ M(8i) in­

U 8 2 > 

For a G-map a:8 + T, we will denote a*= M*(a) 

and a*= M*(a) when no confusion will arise. 

11 

Definition 2.7. A Frobenius-functor on G is a bifunctor 

"' M = (M*,M*) :G + AB, with M* covariant, M* contravariant, 

M* and M* coincide on objects, such that M satisfies 

the following. 

(a) For each G-set 8, M (8) is a commutative ring with 1. 

(b) For each G·-map a:8 + T. a*:M(T) + M(8) is a rinq 

homomorphism (pre serv inq unit) . 

(c) For each G-map ::t:8 + T we may view H (8) as a M(T)-

module via c' *. ~ve then require o.*:M(8) + M (T) to be 
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a M(T)-module homomorphism. Thus for any s E M(S), 

t E M(T), we have a*(a*(t) • s) = t · a*(s) 

(Frobenius reciprocity). 

Definition 2.8. A Green-functor on G is a bifunctor 

" M = (M*,M*) :G + AB which is simultaneously both a Mackey-

functor and a Frobenius-functor. 

Finally, we wish to record two elementary properties 

of these functors which will be useful in Chapter 4. 

Proposition 2. 9.. If M:G + AB is a Mackey-functor, and if 

a:5 + T is an isomorphism of G-sets, then a* and a* are 

inverse isomorphisms. 

Proof. Since a is an isomorphism, the diagrams 

5- T 
a 

T- T 
1 

are pullbacks in G. Applying 2.6(a) to each diagram yields 

Proposition 2.10. Let s1 , 52 E G, with inclusion maps 

Ki:5i + s1 U s 2 . If M:G + AB is a Mackey-functor, then 

K*lKl* + K2K 2*:M(Sl U s 2 ) + M(Sl U 5 2 ) is the identity map. 
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Proof. The diagrams 

<P ..s2 sl 
1 

sl -r 

1 lK2 11 IKl 
'f' . . 

sl s 1 u 82 sl - s1 u 82 
Kl Kl 

are pullbacks. Then .. by 2.6(a), K2*Ki = 0, and K1 *Ki = 1. 

Similarly, Kl*K~ = 0, and K2*K2 = 1. If x E M(Sl U s 2), 

then K1*(KiKl*(x) + K2K 2*(x)) = Kl*(x), and 

K2*(KiKl*(x) + K2K2*(x)) = K2*(x). By 2.6(b), 

0 



CHAPTER 3 

THE F-BURNSIDE RING 

In this chapter we shall construct one of the main 

objects of our study. We then prove a few elementary results 

which will be essential for later applications. 

The Basic Construction 

Let G be a finite group, fixed throughout the re-

mainder of this chapter. Let F:G + AM be a contravariant 

functor, where AM denotes the category of abelian monoids. 

For a G-map a:S + T, we shall denote a
0 

= F(a):F(T) + F(S). 

If given any two G-sets, s 1 , s 2 , with inclusions Ki:Si 

• 0 0 • 
+ s

1 
U s 2 , the induced map K1 x K2 :F(s

1 
U s 2 ) + F(S

1
) 

x F(S
2

) is an isomorphism, then we shall call F additive. 

For an additive functor F and elements x E F(S1 ), 

y E F(S 2 ), we introduce the notation x + y to denote the 

unique element of F(s1 U s 2 ) 

0 • = (x,y). Thus K1 (x + y) = x, 

satisfying 

0 and K
2

(x 

K~ x K~(x .f. y) 

+ y) = y. For the 

remainder of this section, assume we have a fixed additive 

contravariant functor F:G + AM. 

For any G-set S, we form the category (G,S,F) as 

follows: 

14 
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Objects: Triples (T,¢,x) where T E G, ¢:T + S is a G-

map, and x E F(T). 

Morphisms: A morphism (T,¢,x) + (V 1 ~,y) is a G-map 

a:T + V such that ¢ = ~a and 0 a (y) = x. 

Given ( T , ¢ 1 x ) , (V ,\jJ 1 Y) in (G,S 1 F), define 

(T,¢,x) EB (VI 1.}J,y) to equal (T U V,¢ U y,x + y). The later 

is an object of (G,S 1 F) since F is additive. It is 

routine to check that EB is a categorical coproduct for 

(G,S,F). Also, by considering the pullback diagram 

Trv 

1TTrsv 
--+ v 

1~ 
T ¢ 

s 

in G, we may define (T 1 ¢,x)x5 (V,~,y) to equal 

0 0 
(Tx 5V~¢x5w~TrT(x) • "v(y)). 

The operations S and x 5 satisfy all of the neces­

sary identities (check!) to form the half ring A;(s) of 

isomorphism classes of objects in (G 1 S 1 F) 1 with addition 

induced by 8 and multiplication by x5 . We denote the 

associated Grothendieck ring by ~(S), and refer to this 

ring as the F-Burnside ring of G-sets over s. We let 

[T,¢ 1 x] denote the image of (T,¢,x) in AF(S). The fol-

lowing lemma collects some standard results about the 
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Grothendieck group of a category with product, as applied to 

~ (S) (Bass 1968 1 pp. 344-47). 

Lemma 3.1. (a) Each elementof AF(S) has the form 

[T,¢ 1 x] - [V 1 1V 1 Y] 1 for suitable (T 1 ¢,x) I (V, \jJ, y) in 

(G,S 1 F). 

(b) [T 1 cp,x] + [V,1V 1 Y] = [T U V,¢ U w,x + y], and 

0 0 
[T,¢ 1 x] • [V,W 1 Y] = [Tx

8
V,q,x8 1}1,TIT(x) • TIV(y)]. 

(c) [T 1 ¢ 1 X] = [V ,IJ; 1 y] if and only if there exists 

(U,:\,z) in (G 1 S,F) such that (T ti U,¢ U !..,x .f. Z) 

~ (V U U, l)J U /.. , y + Z ) in ( G, S , F) . 

A Cancellation Theorem in (G,S,F) 

The goal of this section is a strengthening of 3.l(c). 

Fixed throughout the present discussion is a G-set S, and 

an additive contravariant functor F:G + AM. 

Lemma 3.2. Suppose (T 1 a,x), (V 1 B 1 y) and (W, y, z) are 

in (G,S 1 F), and that T is a transitive G-set. If 

(Tia,x) 8 (V, B,y) 'V (T,a,x) 0 (W,y 1 Z) in (G,S,F), then 

(V' B 'y) 'V (W, "{, z) • 

Proof. By hypothesis, (T U V, CJ. U 6, X + y) 'V (T U W, v, U Y, 

. . . 
x + z) , so there is a G-isomorphism ¢ :T U V + T U ~'l with 

a U B = (a U y) o ¢ and 
0 • • 

¢ (x + z) = x + y. Since T is 

transitive, and ¢(T) is non-empty, either ¢(T) = T or 

Q(T) c W. We consider these cases separately. 
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Case 1) ¢(T) = T. Then ¢(V) = W. Write ¢ = ~ U A, 

= ¢IT:T + = ¢lv:v + 
. 

with ~ T, and A ~'V. Let Fy:V -+ T U v 
. 

and l<w: W + T U w be inclusions. Clearly, ¢~=~A. 

A
0

(z) = A°K0 (x 
. 

= ~¢ 0 (x 
. 0 . 

Thus, + z) + z) = KV(x + y) = y. w . . 
Moreover, if v E v, then YA(V) = (a U Y) ¢ (v) = (a u B) (v) 

= B(v), that is, YA = S. It follows that A: (V,S,y) 

+ (W,y,z) is an isomorphism, finishing this case. 

Case 2) ¢(T) c W, and therefore T c ¢(V). Hence 
. 

we may write v = T 1 u VI 
I where ¢ (Tl) = T, and Y.7 = T 2 . 

u WI I where ¢ (T) = T2. By additivity of F, write y = xl . . 
+ yl and z = x2 + Z I 1 where x. E F (T i) I y' E F (VI) and 

~ . . 
¢IT: zl E F (W 1

). We may also write ¢ = ~ u A u 0 I with 1J = 

A= ¢IT :Tl-+ T, 
1 

and cS = ¢lv~ :V' -+ W' all iso-

morphisms. As in Case 1, it follows that 

= x
1 

and o0
(z') = y'. Define ~:V-+ W to be 1JA U 8. 

0 • 0 • 0 • 0 
Then ~ (z) = (1JA U 8) (x2 + z') = (1JA) (x 2 ) + cS (z') 

0 0 • 0 • 
=A 1J (x 2 ) + o (z') = x

1 
+ y' = y. Finally, to show S = y0, 

. 
let v E V. Let KT:T + T U V be inclusion, so that w = ~KT. 

If v E T1 , then YW (v) = Y1JA (v) = y¢KTA (v) = (aU y) ¢ (KT), (v)) 

= ( et tj S ) ( KT \ ( v ) ) = a), ( v) = (a U y ) ¢ ( v ) = (a U S ) ( v) = S ( v) . 

If v E V' then y~(v) = yo(v) = (aU y)¢(v) = (aU S) (v) 

= B (v). Thus '~: (V,S,y) -+ (W,y,z) is an isomorphism. 0 
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Theorem 3.3. Suppose {T,a,x), (V' s I y) I (W,y,z) E (G,S,F) 

satisfy ( T , a , x ) C) (V , B 1 y) rv ( T 1 a , x ) 0 ( W, y , z ) . Then 

(V' 6 I y) ~ (WI y I z) • 

n . 
Proof. Write T = u T. I 

. 1 ~ 
where each T. 

~ 
is a transitive 

G-set, and let 

there exists X· 
~ 

~= 

a. = aiT :T. + s. 
~ . ~ 

~ 

E F(Ti) so that 

By the lemma, we may cancel the 

yielding the result. 

By additivity of F, 
n 

(T,a,x) ~ CD (T.,a.,x.). 
. 1 ~ ~ ~ 
J.= 

(T. ,a. ,x.) one at a time 
~ ~ J_ 

Corollary 3.4. [V,S,y] = [W,y,z] in ~(S) if and only 

if (V, B I y) rv (vv, y, z) in ( G, s, F) . 

~ is a Green-Functor 

0 

We shall now establish the fundamental fact that ~ 

is a Green-functor. More precisely, fix an additive contra-

variant functor F:G +AM, then we shall define covariant 

and contravariant morphism maps which turn the correspondence 

S + AF(S) into the object map of a Green-functor. 

Suppose S, T E G, and a:S + T is a G-map. Then 

the map (V,¢,x) + [V,a¢,x] from (G,S,F) to ~(T) re­

spects isomorphism in (G,S,F) and is additive (preserves 

:=:) . Thus there is an induced group homomorphism ·::. * = AF (et.) : 

~(S) + ~(T) satisfying a*([V,ctJ,x]) = [V,et¢,x], all 

[ V, ¢ , x] E AF ( S) . To describe a rna p ':1. * = ~ * ( cd : AF ( T) + ~ ( S ) , 
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note that for any (H,l/J,y) E (G,T,F) we have a pullback 

diagram 

'IT 
WxTS 

s s 

la 'ITW 
'f' 

w T 
l/1 

hence an element 0 [WxTS, 7r 5 , 7rw (y)] of AF (S) • 

Proposition 3.5. Given any G-map a:S + T, the correspond-

a 
ence (W,l/J,y) + [WxTS,7r

5
,7rw(y)] induces a ring homormophism 

c'*:~(T) + ~(S) satisfying a*([~v,I)J,y]) = [WxTS ,o 5 ,~r~(y)], 

for all [W,l/J,y] E AF(T). 

Proof. Define A.: (G,T,F) + ~ (S) by A. niJ',1~,y) 

0 
= [WxTS,7r 5 ,7rw(y)]. It suffices to show that A. is constant 

on isomorphism classes, and that A. respects Q and xT 

(thus A. induces a* above). Fix (V,cp,x), (W,:~,y) in 

(G,T,F). 

i) If (V,cp,x) ~ (Wd,,y), Choose S:V + W, a G­

isomorphism, with ¢ = '-iJP and s0 
(y) = x. If (v,s) E VxTS, 

then a(s) = cp(v) = I)J(B(v)), so that (S(v),s) E WxTS. 

Thus the map y :VxTS + WxTS given by '( (v, s) = ( S (v) , s) is 

a G-isomorphi.sm. 

0 0 0 0 
Y ~w(y) = ~rvB (y) 

Plainly, 

0 
= TIV(X). 

n 5y = ;r 5 and 

It follm·ls that 
0 

y : (VxTS, rr 5 , ;r V ( x) ) 
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ii) To see that A respects ·s;, it suffices to 
• • 0 • 0 

show that (VxTS U WxTs,rr 8 U rr 8 ,rrv(x) + rrv1(y)) 
• 0 • • 

"-' ( (V U W)xTS,rr 8 ,rrvUW(x + y)). Define y :VxT~ U WxTS 

+ (V U W)xTS to be the identity. Evidently, y is an iso-

morphism such that 
• 0 0 • 

rr 8y = rr 8 U rr 8 • We need y rrvUW(x + y) 

0 • 0 = rrv(x) + rrw(y). • 
Let ~:VxTS + VxTS U WxTS and jV:V . 

+ v u w be inclusions. Plainly, rrvUwYKv = jvrrv. Thus 

0 0 0 
KV(Y rrvtjw(x 

• 0 0 • 0 
+ y)) = rrvjv(x + y) = rrv(x). 

0 = rrw(y). 

= rr~(x) 

is inclusion, then 

By the additive of 

• 0 
+ rrw(y). 

iii) To show that 

F, 

A respects 

0 0 
rrvxTW (rr v (x) 

0 0 
rrVxTS (rrv (x)) 

Similarly, if 

0 0 0 • 
Kw (y rrvUW (~ + y) ) 

x 8 , it suffices to 

0 rrw(y))) 

0 0 
• rr WxT S ( rr W ( Y) ) ) • 

Define y:(VxT~v)xTS .... (VxTS)x8 (WxTS) by y((v,~),s) 

= ((v,s),(w,s)). Then y is the canonical isomorphism, and 

· it follows easily that rr S = (rr 8x
8 

rr 5 ) o '(. Moreover, the 

following diagram commutes 
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r:: 
w 

v 

0 

Theorem 3.6. Let G be a finite group, and F:G ~AM be 

an additive contravariant functor. Then AF = CAf,AF*) is 

a Green-functor. 

Proof. We must verify the axioms 2.6(a), (b), and 2.7(a), 

(b), (c). 

Axiom 2.6(a). Let 

X 

'j; 11 
xl 

be a pullback diagram in G. 

:_)) 
2 

p2 
y 

¢1 

~'le must show that A A* = · *· • 
'+ 2 * ~ 1 ~ 2 . .,.. 1 *. 



¢ 2.¢f([S,a,x]) = [X 2xYS,rrx 2 ,rr~(x)], and $~~l*([S,a,x]) 
rvo = [XxX S,~ 2 rrx,rr 5 (x)], where the pullback diagrams 

1 

'V 

s xxx s 
TIS 

s 

l¢la and rrxl 1 la 
y X xl 

~1 

explain our notation. Define y:XXX S + x 2xyS by y(x,s) 
1 

= (~ 2 (x),s). Using the fact that X rv x
1

xyx 2 , it is easy 

to see that y is an isomorphism of G-sets. 

It is equally evident that ~ 2rrX = rrX y. Since 
2 

~S = rr 5y, it follows that y 0rr~(x) = ~~(x). Thus 
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0 
(X2xyS,rrx ,rr5 (x)) is an isomorphism. 

2 

rvO 
y: (XxX S,~ 2 rrX,rr 5 (x}) + 

1 

Thus, ¢2*¢f = ~Z~l*" 

Axiom 2.6(b). s 2 be G-sets, and let K. : 
l. . 

si + sl u s2 be the inclusion maps. We show that Kl* X K2*: 

~(s1 U s 2 ) + AF(S1 ) x AF(s 2 ) is an isomorphism by exhibiting 

its inverse. We define 6:~(S1 ) x ~(s2 ) + AF(s1 U s 2 ) by 

s ( [ T 
1

, cp 
1

, x 1 1 I [ T 
2 

, <P 2 , x 2 l ) = [ T 
1 

u T 2 , ¢
1 

u <P 2 , x1 
+ x 2 l 

that this is well defined) . It suffices to show that 

(check 

S o (Kl* x K2*) and (Kl* x K2*) o S are both the identity 

(then 3 is a ring isomorphism). First let [T 16 1x] 

E AF ( S 
1 

U S 2 ) . Then S o ( K 
1 

* x K 2 * ) ( [ T 1 ¢ 1 x] ) 

0 rvO 
= S(Txs us sl,rrS ,:rT(x)],[Txs us s21r.s liTT(x)]} 

1 2 1 1 2 2 
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• • 0 • 'V0 
= [ (Txs ~s s 1 ) U (Txs ~s s 2 ),ns U TIS ,TIT{x) + TIT(x)], where 

1 2 1 2 1 2 

the following pullback diagrams explain our notation. 

TIS TIS 

Txs us sl 
1 

sl Txs ~s s2 
2 

+ s 
2 I 1 2 

1 Kl 

'\, 1 1 2 

1 K2 TITJ TIT . u T s1 u s2 T + sl s2 
<P ¢ 

Define to be 

Then y is a G-isomorphism such that ¢y = TIS LJ TIS • 
1 2 

We 

o o 'i.Jo 
claim that y (x) = TIT(x) + nT(x). Let A.:Tx8 l)s s. 

~ 1 2 ~ 

+ (Tx8 Os s 1 ) U (Tx8 l)s s 2 ) be inclusion. By the additivity 
1 2 . 1 2 

0 0 
of F, and symmetry, it suffices to show that A

1
y (x) 

0 
= nT(x). This equation follows since yA 1 =TIT· Thus 

• • 0 • 'V0 
y: ( (Tx 8 0 8 s 1 ) u (Tx8 u 8 s 2 ) , IT 8 U TI 8 ,n T (x) + ITT (x) ) 

1 2 1 2 1 2 

+ (T,¢,x) is an isomorphism, so that B o (Kl* x K2 *) is 

the identity on AF <s1 t) s 2 ) · 

Conversely, let ( [T
1

,q;
1 

,x1 ], [T2 ,q;
2

,x21) E ~ (S
1

) 

x AF(S 2 ). Then as easy computation shows (Kl* x K2 *) 

0 s([Tl'¢l'xl] [T2'¢2'x2]) = ([(Tl t) T2)xs l)s 8l'ifs I 

1 2 1 

rr~ l)T (Xl + X2)] ,[ (Tl l) T2)xS l)s 8 2'/TS 'i~ ''T (X +X)]) 
1 2 1 2 2 lu 2 1 2 

(the reader can deduce our notation). By syrrunetry, it suf-



0 • 
~T UT (X1 + x2 )). Define 

1 2 

y(t,s) = t. Note that if 

. 

. 
y : ( T 1 U T 2 ) X S US S 1 + T 1 by 

1 2 

(t,s) E (Tl U T2 )x5 US s1 , then 
1 2 
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s = K
1 

( s) = ( cp 
1 

U cp 2 ) ( t) E s
1

• Thus t E T 
1 

and s = cp 
1 

( t) . 

It follows that y is an isomorphism. Plainly, cp 1y = ~S , 
1 

so finally we must check that 
0 0 • 

y (Xl) = ~T UT (Xl + X2). 
1 2 

If 

. 
A.:Tl + Tl u T2 is inclusion, then ~ . 

T1UT2 
=. A.y. Thus 

~~ UT (Xl 
. 

= y 0
A.

0 (X 
. 0 + X2) + x2) = y (Xl) . 

1 2 1 Therefore, y is 

the required isomorphism. 

Axiom 2.7(a). Let S beaG-set, and let G/G 

denote the one-point G-set. Define r ·s + s. s in the 

only possible way, and let ls be the unit of F (S) . Then 

it is easy to check that [s,r
5

,1
5

] = 1A ( S) . 
F 

Axiom 2.7(b). This is shown in 3. 5. 

Axiom 2. 7 (c) . Let a.:S + T be a G-map. Let [V,cp,x] 

E Ap{S) and [W,~,y] E ~(T). We must show that 

a* (a.* ( [ W , \1.1 , y] ) • [ V , cp , x ] ) = [ W, \f.! , y] · a. * ( [ V , cp , x] ) . After a p-

plying the definitions of a.* and a* it is enough to show 

0 0 0 that ((WxTS)x5V,a o (7T 5x5¢),(~~7 S~N(y)) • (nV(x))) 
.XT 

~ (WxTV,~xT(a.¢),~~(y) • ~~(x)), where the following pullback 

diagrams explain our notation. 
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'V 

WxTS 
'ITS 

s (WxTS) xSV 
'lTV 

v ~vxTV 
'lTV 

v -+ 

~wj la ~wxTs 1 1~ ~wl la¢ 
Ttl T WxTS _,.. s w T ljJ 'ITS t/1 

Define y: (WxTS)xSV + WxTV by y ( (w,s) ,v) = (w,v). Then y 

is a G-isomorphism such that a o (1TSXS~) = (ljJxT(a~)) o y 

(as one checks) . 
'V 

Moreover, since TrW'ITWxTS = 1TwY and 

follows that 
0 rvO rvO rv 0 

Y (rrw{y) • Trv (x)) = (1TTt7y) (x) 

0 0 
('ITWxTS7r.N (x)) 

0 (Trv(y)). Thus Y gives us the 

required isomorphism. 0 

A Basis for ~{G) 

We introduce some notational conveniences. If H ~ G, 

then G/H denotes the transitive G-set of left cosets modulo 

H. We will denote ~(G/H) by ~(H). In particular, if 

H = G, then for any non-empty G-set T, there is exactly 

one G-map nT:T + G/G. Thus we abbreviate the category 

(G,G/G,F) to (G ,F) I the element [T,nT,x] of AF(G) to 

[T,x], and the object (T,nT,x) of (G ,F) to (T ,x). Then 

isomorphism in (G ,F) of objects (T ,x) and (V' y) is 

equivalent with the existence of a G-isomorphism S:T + V 

with 
0 

S (y) = X • 

For any G-set " . , Especially, 

if a E P, we shall abbreviate 'ivs to wa = AutG (Sa). 
a 
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We use WT to define an equivalence relation 'V on F (T) , T 

namely, we say xrv y 
T if and only if there exists CL E vJT 

with 0 F (T) . shall let a. (x) = y, x, y E For a E p we 

xrv y denote xrv y The following lemma is a direct con-
a sa · 

sequence of these definitions and Corollary 3.4. 

Lemma 3.7. Let T beaG-set, and let x, y E F(T). 

Then x~Ty if and only if [T,x] = [T,y] in ~(G). 

Let y = y(G) = {Sa:a E P}. By 2.l(a), y is a 

complete set of representatives of isomorphism classes of 

transitive G-sets. For each a E P, choose a set Ra c F (S ) 
- a 

of equivalence class representatives under 'V • 
a 

The following 

propostion may be viewed as the uniqueness statement in 

Wedderburn's theorem. 

Proposition 3.8. Fix 

n 

a E P and suppose that 
m 
L [S ,x.] 

. 1 a l. l.= 

= \ [S ,y.] for some 
.l 1 a l. 
l.= 

x . , y . E R . Then m = n , and 
l. l. a 

there is a permutation TI of {1, ... , n} such that 

all i. 
. . ~ . 

Proof. By 3.4, + + xm) 'V ( u s a'Yl + = i=l 
~ 

'V u s a' so m = n. For 
= i=l 

in particular, 

notational ease, we set s a' 1 < i < n. Choose an 

isomorphism 
n . n . 

a.: u S1 ~ u S1 with 
. 1 a . 1 a l.= l.= 

CLO( + +. y) =X 
Y 1 • • • n 1 

. . 
+ ... + x. For each i, 

n 
i 

::i ( s ) 
a 

is a transitive subset of 
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so there is an index ii ( i) with = srr (i) 
a . 

This defines 7T • Since a is an isomorphism, 7T is a 

{1, i It sj permutation of • • • I n}. For each i, let K. :S -+ u 
l. a j=l 

be inclusion, and let a. = al .:si-+ Srr(i). Plainly, aK. 
1 sl. a a 1 

= K (')a .• ii l. l. 
0 0 • = Kia (yl + 

a 
0 0 0 • 

Thus a . (y ( . ) ) = a . K ( . ) (y1 + 
l. 7T l. l. 7T l. 

-i- yn) = K~(x1 + ... -i- xn) = xi. Since 

a.: si srr(i) 
.1. a -+ a is an isomorphism, and si = srr(i) = s, 

it follows from the fact that 

all i. 

X. ' l. 

a a a 

that 

Theorem 3.9. Let F:G-+ AM be an additive contravariant 

0 

functor. Define BF = { [Sa,x] :a E P(G), x ERa}· Then BF 

is a Z-basis of ~(G). 

Proof. Let [T,y] E ~(G). Write 
n 

T = U T., 
. 1 l. J.= 

with each 

T. a transitive G-set. By additivity of F, we may find 
l. 

choose 

each 

Thus 

n 

a. E P 
l. 

with 
n 

[T,y] = L [T. ,y.]. 
. 1 l. l. 
J.= 

and an isomorphism et..:S -+ T .• 
l. a. l. 

l. 

For each i, 

Then, for 

i, there is a unique x. E R with 
l. a. 

0 a. (y. )"' x .. 
l. l. a. l. 

l. 

(T. 'y. ) 
l. l. 

"'(S ,a?(y.))"' a. l. J. 
l. 

l. 

(S ,x.), a. l. 
l. 

so that [T 'y] 

= L [S ,x.], 
i=l a 1 

and BF spans. 

relation 

For independence, first suppose there is a dependence 

n 
j c. [S ,x.] = 0 for some fixed a E P, 

.-1 l. a l. 
J.= 

where 

a 



x. :f:x. 
~ J 

if i :f: j, and c. is non-zero, all i. 
~ 

Then by 
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Proposition 3.8, the equality L c . [ S ,x. ] = j ( -c . ) [ S , x . ] 
>0 ~ a 1. <o J a J C. C· 

~ J 

yields x. = x. 
~ J 

for some i ~ j, a contradiction. In 

general, if there is a dependence relation I I c [S ,x] 
aEP xER a,x a 

a 

= 0, then since the S are pairwise non-isomorphic, a 

Corrollary 3.4 yields I c [S ,x] = 0, for each a E P. 
ER a,x a 

x a 

By the above argument, c = 0 for all a E P, a,x x E R • 0 
a 

Finally, let us consider the case when the relation 

rv is trivial. 

Definition 3 .1 0. Let T be a G-set. An element X E F (T) 

is normal if given o. E WT = AutG (T), have 0 any we o. (x) = x. 

Let FN(T) denote the set of all normal elements of F (T) . 

A G-set T is normal over F if FN(T) = F (T) . If every 

G-set T is normal over F then F is called normal. 

We collect some facts about normality. 

Proposition 3.11. Let F:G ~ AM be an additive contra-

variant functor, and let T be any G-set. 

(a) FN(T) is a subgroup of F(T). In fact, if we 

let W~ = {~ 0 :a E WT} c Aut(F(T)), then FN(T) is the 

fixed subgroup of F(T) under the action of W~. 
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(b) If nT:T + G/G denotes the canonical map, then 

image 0 
(nT) C FN(T). 

(c) If Sa is normal over F, then Ra = F(Sa). 

In particular, if F is normal, then Bp = {[Sa,x] :a E P, 

x E F(S )}. a 

The proofs of these statements are trivialities. 

Under the assumption of normality for the functor F, the 

Green-functor ~ is especially computable. Indeed, its 

theory resembles that of the Burnside ring functor A. It 

will be the topic of Chapter 6 to describe some of these 

connections. 



CHAPTER 4 

FUNCTORIAL PROPERTIES 

Fixed throughout this chapter is a finite group G. 

We shall denote by AMG the category of additive contra-
..... 

variant functors F:G + AM, with natural transformations as 

morphisms, and by GFG the category of Green-functors 

M:G + AB. Given ME GFG, it follows that where 

for a G-set S, M*(S) is the multiplicative monoid of M(S). 

By axioms 2.6(b), 2.7(a) and 2.7(b), we obtain the forgetful 

functor U:GFG + AMG given by U(M) = M*. By general ex-

istence theorems, a left adjoint must exist for U. The 

purpose of our present discussion is to show that the cor­

respondence F + ~' from AMG to GFG, defines such an 

adjoint. We must first establish that this correspondence 

defines a functor. 

Proposition 4.1. Let F1 , F 2 E AMG, and let y:F1 -+ F 2 

be a natural transformation. Then there is an induced 

natural transformation of Green-functors ?:Ay -+ ~ , such 
1 2 

that for all S E G, [T,cp,x] E Ay (S), y8 ([T,¢,x]) 
1 

= [T,¢,yT(x)] E ~ (S). 
2 
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A 

Proof. Let S E G. Define As: (G,S,F1 ) + ~ (S) by 
2 

A S ( T , ¢ , x) = [ T , ¢ , Y T (x ) ] . 

respects isomorphism, 

E (G,S,Fl) I i = 1, 2. 

We must first check that 

and Let (T.,c.p.,x.) 
~ l. ~ 

A 
s 

i) Suppose a: (T1 ,cp 1 ,x1 ) + (T
2

,cp 2 ,x2 ) is an iso-

morphism, so that F 
1 

(a) Cx
2

) 

is a natural transformation, 

= X 
1 

and q, 1 = cp 2a. Since 

= Y T F 1 (a) (x2) 
1 

= yT (x1 ). It follows that a: (T1 ,¢
1

,yT (x1 )) 
1 1 
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y 

+ (T
2

,¢
2

,yT (x
2

)) is an isomorphism in (G,S,F
2
). Thus, by 

2 
Corollary 3.4, A5 (T1 ,¢ 1 ,x1 ) = [T1 ,¢ 1 ,YT <x1 ll 

1 

= [T 2 '¢ 2, Y T (x2)] = AS (T 2 '¢ 2 'x2) . 
2 

ii) As respects (9. Need A5 (T
1

,¢ 1 ,x1 ) 

+ A S ( T 2 , ¢ 2 , x 2 ) = A S ( ( T 
1 

, ¢ 
1 

, x 1 ) EB ( T 
2 

, ¢ 2 , x 2 ) ) , that is , 

[Tl U T2,¢1 U ¢2,yT (xl) + YT (x2)] = [Tl U T2,¢1 U ¢2, 
1 2 

x 2 )]. It suffices to show that YT (x1 ) + YT <x 2 ) 
1 2 

By naturality, 

Thus, 

. 
By additivity of F

2
, this shows yT (x1 ) + YT (x 2 ) 

1 2 

YT (x. ) . 
. l. 
l. 

iii) AS respects x 5 . Computing, as above, we must 

show that 



= [TlxST2,¢lxS¢2,F2 (TI"l) (yT (xl)) • F2 (y2) (TI"T (x ) ) ] ' so it 
1 2 2 

suffices to show YT x T (F
1

(1T1 ) (x1 ) • F
2

(1T
2

) (x 2 )) 
1 s 2 

= F 2 (Til) (yT (x1 )) • F
2 

(1T 2 ) (yT (x 2 )) in F 2 (T
1

x
8

T2 ). This 
1 2 

follows immediately, since by naturality of y, 

YT T Fl (iT . ) = F2 (1T . ) YT I i = 1 I 2. 
lxs 2 ~ ~ i 
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It follows that there is an induced ring homomorphism 

1 8 :AF {S) + ~ (S) satisfying 18 ([T,¢,x]) = [T,¢,yT(x)]. 
1 2 

" 
We now show 1 = {1

8
:s E G} is a natural transformation of 

Green-functors ~ -+ ~ • Let a:S + T be a G-map. YVe 
1 2 

must show that 1TAF (a) = AF (a)1 8 :~ (S) -+ ~ (T), and 
. 1 2 1 2 

that 
-

1SAF (a) = ~ (a)yT:AF (T) -+ 
1* 2* 1 

If [V,¢,x] E ~ (S), then 
1 

AF (S). 
2 

'?~f. (a) ( [V ,¢ ,x]) 
1 

=Af. (a)([V,¢_,yv(x)]) 
2 

= Af. (a)1
8 

( [V ,¢,x]). 
2 

Conversely, if [W,~,y] E ~ (T), then 
1 

ySAF *(a) ([W,t~ 1 y]) = y8 {(WxTS,TI 8 1Fl (1TW) (y)]) = [WxTS,1T 8 , 
1 

Ywx 8F 1 (1Tw) (y)], whereas, ~ * (a)yT([W,:lJ 1y]) 
T 2 

=~*{a) ([W,•hyw(y)]) = [WxTS,TI 8 1F 2 (TIW)yw(y)]. By naturality 
2 

0 

Corollary 4. 2. The correspondences F -+ ~ 1 y -+ '? define 

a covariant functor from k~G to "FG \;;J • 



Conversely, we have the following. 

Proposition 4.3. Let FE AMG, and ME GFG. Given any 

natural transformation y:F + U(M), the prescripition 
'V 
y8 ([T,¢,x]) = M*(cp)yT(x) :~(S) + M(S) defines a natural 

transformation of Green-functors 
'V 
y:~ + M. 

Proof. Fix S E G. Define A8 : (G,S,F) + M(S) by 

A8 (T,¢,x) = cp*yT(x), where ¢* = M*(cp):M(T) + M(S). As 

usual, let (T.,cp.,x.) E (G,S,F), i = 1, 2. 
~ ~ ~ 
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i) AS respects isomorphism. Suppose a: (T1 ,¢ 1 ,x1 ) 

0 is an isomorphism, so that a (x 2 ) = x1 and 

¢1 = ¢ 2a. By Frobenius reciprocity (2.7(c)), A8 (T
1

,¢ 1 ,x1 ) 

= <PiYTl (xl) = <jl~a.*yTl(o.O(x2~) = <P2a.*a.*yT2 (x2) = <P2(YT2 (x2) 

• a*(lM(T ))) = ¢2YT (x2) = AS(T2,¢2,x2). 
1 2 

ii) As is additive. By Frobenius reciprocity, 

naturality of y, and Proposition 2.10, we have 

As(Tl,cpl,x1) + As(T2,¢i,x2) = ¢iYT (x1) 
1 

+ ¢2Y T (x2) 
2 

(cp 1 u o K1 )*yT (K~(xl 
. 

x2) ) = ¢2 + 
1 

(¢1 u ¢2 o K2)*yT (K~(xl . 
x2)) + + 

2 

(¢1 u ¢2)*KiKl*YT UT (xl 
. 

x2) = + 
1 2 

(¢1 u ¢2)*K2K2*YT UT (x1 
. 

x2) + + 
1 2 



34 . . 
= (¢1 ll ¢2) * (yT UT (xl + x2) . Ki (1M ( T 1 ) ) ) 

1 2 . • 
+ (¢1 u ¢2)*(yT UT (xl + x2) • K2(lM(T ))) 

1 2 2 
. . 

= (¢ 1 u ¢2)* (yT UT (xl + x2) {(KiKl* + K2K2*) {lM(T
1

UT
2
)))) 

1 2 
. . 

= (¢ u ¢2) *y T UT (xl + x2) = /.. S ( ( T 1 , <D 1, xl) 2 (T2,¢2,x2)). . 1 1 2 

iii) >..
8 

respects x
8

. Using Frobenius reciprocity, 

and 2.6(a) we have 

= (¢lxS¢2)*YT1x8T 2 (rr~(xl) • 'IT~(x2)) 

= (¢lxS¢2)*(~(T x T ('IT~(xl)) • YT x T (rrg(x2))) 
1 s 2 1 s 2 

It follows that >..
8 

induces a ring homomorphism 

~ ~ 
y8 :~(S) + M(S) satisfying y

8
([T,cp,x]) = M*(¢)yT(x). To 

~ ~ " 
see that y = {y

8
:s E G}:~ + M is a natural transformation 

of Green-functors, let o.:S + T be a G-map. We must show 

that and that 



If [V,¢,x] E ~ (S), then 
'V 
Y TAP ( a ) ( [ V , ¢ , x ] ) 

'V = yT([V,a¢,x]) = M*(a¢)yv{x) = M*(a)M*(¢)yv(x) 

= M*(a)y
8

([V,¢,x]). 

Conversely, if [W,~,y] E ~(T), then 
'V 'V 0 
y 

8 
~ * (a ) ( [W , 1~ , y] ) = y 

8 
( [ ~·7xT S , rr 8 TI W ( y ) ] ) . = rr~ywx S (rr~ (y) ) 

. T 
= M*(a)yT([W,ljJ,y]), using 2.6(a). 

We can now prove the main theorem of this chapter. 

Theorem 4.4. The functor F + ~ from AM.G to GFG is 

the left adjoint of the forgetful functor 
G 

U :G·F + AM.G. 

Proof. Fix F E 
G 

Al-l 1 r1 E GFG. We must establish a 

natural bijection Nat(~ 1 H)++ Nat(F,UM). Define 

<P:Nat(~,M) + Nat(F,UM) by ciJ(y)
8

(x) = y
8

([S,l 8 ,x]), and 
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~:Nat(F 1 UM) + Nat(~,M) 
'V 

by 'i'(y) = y (which is well defined 

by 4.3). We now show that <P and '¥ are inverse bijections. 

If Y E Nat(~,M), S E G1 and 
'V 

then ('¥<P(y)) 8 ([T1¢,x]) = ct>(y) 8 ([T,¢,x]) 

= M * c ¢ ) y T < [ T 1 1 T, x J ) = y sAP < ¢ ) c [ T , 1 T, x J ) 

'¥¢ = 1. 

[T,¢ 1 x] E AF (S), 

= M*(¢)<P(y)T(x) 

= y 8 ([T1¢1x]). Hence 

If y E Nat(F,UM), S E G1 and x E F(S), then 
'V 

(¢~(y)) 8 (x) = ~(-r) 8 C[s,l 8 ,x]) = y8 ([S11
8

,x]) = M*(l
8

)y8 (x) 

= y8 (x). Therefore ¢'¥ = 1. All that remains is to show 

naturality in F and M. 

For the 'F' variable, let y:F 1 + F 2 be a natural 

transformation in AMG, and let '-¥ i: Nat (F i, UM) + Nat (AF. , ~1) 
l. 
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be the function given above, i = 1, 2. We must show that 

for any 8 E Nat (F 
2

1 UM) 1 we have rr
1 

(Gy) = -+ M. 

Let s E G and [T,¢ 1 x] E A:F (S). Then ,!' 1 (8y) 5 ( [T,¢,x]) 
~ 1 

= (8y) 8 ( [ T, ¢, x] ) = M* { ¢) (8y) T (x) = M* ( ¢) 8T~T (x) 

= rr 
2 

( 8) 
5 

( [ T, ¢ , y T (x) 1 ) = ~ 
2 

( 8) 
5

-y s ( [ T, ¢ , x 1 ) • 

For the 'M' variable, fix F E AMG, and let 

y:M1 + M
2 

be a natural transformation of Green-functors. 

We must show that for any 8 E Nat(F,UM
1

), we have y~l (8) 

= ~ 2 {y8) :~-+ M2 . Let S E G and [T,¢,x] E ~(S). Then 

(y~ 1 (e)) 5 {[T,¢,x1) = y 5~ 1 (e) 5 ([T,¢,x]) = y 5~5 ([T,¢,x]) 

= YsMi(¢)8T(x) = M2(¢)yT8T(x) = M2{¢) (y8)T{x) 

= ~ 2 (y8) 5 ([T,¢,x]). 

Of course, if we let M = ~~ then adjointness im­

plies that the identity transformation 1~ E Nat(AF'~) 

determines a universal arrow ¢ ( 1 ~) : F -+ U~ (Mac Lane 19 71, 

pp. 77-84). Explicitly, we have ¢(1~) 5 (x) = [S,l 5 ,x], 

A 

all S E G, x E F(S), and the universality may be 

rephrased thus: 

Corollary 4.5. Let FE AMG, and ¢(1A) :F-+ UAF be the 
F 

natural transformation given above. Then, given any Green-

functor M, and natural transformation y:F -+ UM, there is 

a natural transformation of Green-functors (given 

as in 4.3) such that 

0 
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Now the functor I:G + AM, which associates to each 

G-set the monoid consisting of the identity alone, is both an 

initial and final object in AMG. For each FE AMG, we 

let aF:I + F and ~F:F + I be the canonical natural trans­

formations. Since ~FaF:I + I is the identity, it follows 

that for each G-set S, &F 5 :AI(S) + ~(S) embeds AI(S) 
' . 

as a direct summand of ~(S), and that eF,S:~(S) + AI(S) 

is surjective. In particular, the correspondence (T,¢) 

+ [T,¢,1] is an isomorphism A(S) + AI(S), where A(S) 

the Burnside ring of G-sets over s (Dress 1971, pp. 54-61)' 

and thus we may (and do) identify A (S) with a subring of 

AF (S). Explicitly, A (S) ~ image WF ,s 0 eF,S) =:~(S), 

any F E AMG. This observation will be useful later when we 

shall exploit the known properties of A(S) in determining 

those of For example, using the fact that a 
F 

and 

eF are natural transformations of Green-functors, together 

with the fact that A ~ AI is an initial object in GFG 

(Dress 1971, p. 79), we obtain 

Corollary 4.6. For any FE AMG, ~ is an initial object 

in the category of Green-functors: G + AB. 

Finally, we can compute the defect basis of AF. 

Indeed, since the defect basis of the Burnside ring functor 

is the set of all subgroups of G, the following corollary 

is obtained. 
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Corollary 4~7. For any FE AM8 , the defect basis of ~ 

is the set of all subgroups of G. 

Proof. This follows directly from Dress (1971, p. 87), and 

the existence of &F and eF · 0 



CHAPTER 5 

STRUCTURE THEORY 

Fixed in this chapter are a finite group G, and a 

functor FE AMG. By Theorem 3.9, ~(G) is torsion free 

(as an abelian group) , and thus it embeds faithfully in the 

tensor product O·@ ZAP (G). For simplicity we shall denote 

~@~AF{G) by ~AF(G), and consider its elements to be 

rational multiples of elements of ~(G). The principal aim 

of this chapter is the explicit computation of ~AF(G). In 

the next chapter we will use this characterization to examine 

the prime ideal structure of ~(G) when F is normal. 

The Structure of QAF(G) 

As discussed at the end of Chapter 4, A(G) ~ AI(G), 

and we may identify A(G) with the subring of AF(G) con-

" sisting of the elements {[S,l] - [T,l] :S,T E G}. In 

particular, from Chapter 2, ~A(G) has primitive idempotents 

{e :aE P}, 
a 

in QA(G) 

where 

satisfies 

ea = lAb a[Sb,l], and multiplication 
bEP I 

[sa, 1] [ sb, 1 l = I v a b [ s , 1 l . 
cEP ' ,c c 

Lemma 5.1. Let a, bE P and x E ~(Sa). Then for some 

r > 0, [Sa,x] [Sb,l] = V b [S ,x] + l [S ,x.], where 
a, , a a j =l aj J 

a. < a 
J 

and x . E F ( S · ) , 
J a. 

J 
1 .::_ j < r. 
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Proof. Set n = V . a,b ,a 

result is clear. Assume 

If a 1 b, then n = 0 

a < b, and set 
i s = s , a a 

and the 

1 < i 

< n (possibly n = 0, but this gives no trouble). Then 

1i 
u s = S, where a. <. a, 1 < 

j=l a. J 
J 

sa x s "' s
1 U u sn u b = a · · · a 
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j .:_ r (by 2.2 (c)). Let a:S -;- sa X sb be this isomorphism, 

and let 
i 

K. : S + S, 
1. a ,t.:S +S 

J aj 
be the canonical injections. 

Let rr:sa x Sb + Sa be the projection map. Since each com-

posite i ITCI.K. : S = S + S 
1. a a a is a G-map, it must be an auto-

morphism, by the transitivity of sa. By Lemma 3.7, [sa, x] 

i 0 
1 i < 0 F(S ) ' = [S ,(rraK.) (x)] < n. Set x. = (rra.e . ) (x) E a 1. J J a. 

J 

1 < j < r. By the additivity of F, and the above comments, 

= ~ i 000 r 000 
L [S ,K.a ';T (x)] + L [S 1.e .a 'ii (x)] 

. 1 a 1. . 1 a. J 
1.= J = J 

n r 
= I [ S , x] + L [ S , x.] 

. 1 a . 1 a. J 
1.= J = J 

r 
=V b [S ,x] + L [S ~x.]. 

a 1 1 a a j =l aj J 
0 

We now generalize Proposition 2.4. 



Proposition 5.2. Let a, bE P with b f a, and let 

x E F(Sa). Then [Sa,x]eb = 0. 

Proof. The proof proceeds by induction on a E P with 

respect to < If a= 1, then by 5.1 and 2.3, 

I Ac b[s1 ,x] [S ,1] 
cEP ' c 

= ( L Ac bvl c 1) [Sl,x] = 0 · 
cEP ' ' ' 
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Assume [Sc,y]eb = 0 whenever c <a and y E F(Sc) 

b i c, since b i a). Then 

(thus 

Since each 

= /. A b [ S , x] [ S , 1] eb cEP c, a c 

r c 
+ L L A b[S ,x. ]eb. 

c j=l c, aj,c J,C 

a. <.a, 
J,C induction implies that all 

[S ,x. ] eb = 0, and thus, [Sa,x] eb a. J ,c J,C 
= (L\ bv ) [S ,x]eb. The hypothesis b I a implies that c c, a,c,a a 
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either a < b or a t_ b. If a < b, then 2.3 implies 

I>- v = 0. If a t_ b, then a f. c for all c < b, c,b a,c,a c 

so that v a,c,a 0, all c < b by 2.2 (c). But if c f b, 

then \ c,b = 0 by definition. Hence I>- v = 0 in 
c c,b a,c,a 

this case also. In either case, this implies [Sa,x]eb = 0. 0 

The next step is the explicit ·COmputation of the 

product y E F (S ) • a To obtain 

this, we must recall an isomorphism yielding the decomposi-

tion of sa x Sa into transitive G-sets. For any a E P, 

recall that AutG(S~ ~ NG(Ha)/Ha' in particular IAutG(Sa) I 

= V . We just state the following lemma. a 

Lemma 5.3. Let a E P, and set si = s , 
a a 

l<i<V. 
a 

Say that = {a. :1 < i < v }. 
~ a 

For each i, define 

i a.:S -+ S 
~ a a 

(possibly empty) set 

and an isomorphism 

i sl that if K. :S -+ 
~ a a 

then a. = aK., all 
~ ~ 

a.(s) = (s,a.(s)). 
~ ~ 

Then there is a 

{a.:l < j < n} c P with each a. <a, 
J - - J 

1 • • va · lJ a: S U ... U S U U S -+ S x S such a a a. a a 
j=l J 

. . v . :t;;l a u u sa 0 u s is inclusion, 
j=l a. 

J 

i. 

Since F is a functor, there is a natural action of 

~vs on F (s) , for any G-set S, given by 
-1 0 

0 • X = (.J ) (X) , 

x E F(S), a E w5 . Contravariance implies (a-r) • x 

= ((cr-r)-l)O{x) = (t-10-l)O(x) = k-l)O{T-l)O{x) =a • (: • x). 
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For brevity we denote G • X by X • 
0 

This action plays a 

key role in the structure of ~~{G), as illustrated by the 

following lemma. 

Lemma 5.4. Let a E P, x, y E F{Sa). Then 

l [ S , xy 
0

] e . 
EW a a a a 

Proof. Let {a.: 1 ~ j ~ n} C pI a, a i, K. be as in 
J ~ 

s1 u v n 
Lemma 5.3. Denote s u s a ti u s and let = ... I a a j•l a. 

J 

'IT. : s X s + s 
~ a a a be the coordinate projections, i = 1, 2. 

Using the additivity of F, together with 5.2 and 5.3 we 

have 

0 0 0 
= [S,a ('IT 1 (x) · 'IT 2 (y))]ea 

= 

= 

= 

v 
3. i 0 0 I [S ,a.('IT.(X) 

. 1 a ~ ~ 
.1= 

v 
a i 0 I [S , (r- 1 ~.) (x) 

. 1 a ~ 
~= 

0 ( :. 
2 

c~ . ) ( y ) ] e 
~ a 



v 
L

a . 
= r S~ X • t. , 

. 1 a 
~= 

0 (CJ.) {y)] e 
~ a 

= I [ S , xy 0 ] e . 
CJEW a a 

a 

Corollary 5.5. Suppose a E P, X E F (S ) I a 

Then [ S , x] [ s , y] e = V [ S , xy] e . a a a a a a 

44 

0 

The following lemma will be crucial in computing the 

prime ideals of Ap(G), when FE AMG is normal. 

Lemma 5.6. Let a E P, x E F(Sa)' and y E FN(Sa). Then, 

n 
[ Sa , x 1 [ sa , y] = v [ s , x y] + I [ s , x . ] , where a . < a , 

a a j=l aj J J 

x. E F ( S ) , all j . 
J aj 

Proof. Let {a.: 1 < j < n} c P, a, a i, K. be as in 
J - - - ~ 

sl 
v I) u u a u and let s = ... sa u s . Let 7T. : s X s ~ 

a 
j=l a. ~ a a 

J 

be the coordinate projections. By Lemma 5 • 3 , __.. I"'JK • sj /, 1"" .• .J a 

= Sa ~ sa is the identity map, and 

a G-automorphism, all j. Therefore, 

0 

TI aK.:Sj = S ~ S 
2 J a a a 

0 
X= (rr1 aKj) (x), 

y = (TI 2o:Kj) (y), all j, since y E FN(Sa). Thus, 

0 0 = [S,(-..
1

u) (x) • <--
2

:;.) (y)] 

5.3, 

s a 

is 

and 
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v 
a · 0 0 = L [S 1

,(rr
1
aK.) (x)•(JT

2
aK

1
.) (y)] 

. 1 a 1. 1.= 

n 
+ I [ S , x.] , some x. E F (S ) 

j=l aj J J aj 

v a n 
= L [ S , xy} + I [ S , x . ] 

i=l a j=l aj J 

n 
= V [ S , xy] + I [ S , x. ] . a a . 1 a. J 

J= J 
0 

For any monoid H, Let ~H denote the rational 

group algebra. For a E P, 

-1 

define ~ :~F(S ) + ~A_(G) a a --r • e 
a 

by ~a (x) = Va [Sa,x]ea' all 

linearly to all of e:JF ( S ) • 
a 

Lemma 5.7. For any a E P, 

homomorphism. 

x E F(S ), then extend a 

~ is a surjective ~-space 
a 

Proof. Everything is clear except surjectivity. It is suf-

ficient to show that for any bE P, x E F(Sb)' 

E irn~~ • We proceed by induction on b. First note that if 
a 

a I b, then [Sb,x]ea = 0 E im~a' by 5.2, and if a= b, 

then [ S 1 x] e = ~ (V x) . In particular 1 this covers the case a a a a 

b = 1. Assume that b > 1, and that whenever c < b and 

y E F(Sc)' then [Sc,y]ea E im~a· We may also assume a< b. 

Applying 5.1 and 2.5(a) we have 



= [Sb,x]e e a a 

-1 = V [Sb,x] [S ,l]e a a a 

-1 = v vb b[Sb,x]e a , a, a 
1 r 

+ v- I [Sb ,x.]e , a . 1 . J a 
J= J 
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where b. < b, and x. E F(sb.), 1 < j ~ r. Since a< b, 
J J J 

Vb b = o by 2.2(c). 
I a I 

By induction, each [sb.'xj]ea E im~a' 
J 

so thai.. 

" 
If s E G 

1 r 
= v- I [Sb ,x.]e E a . 1 . J a 

J= J 
imt)J . 

a 

and cr E NS' then clearly 

0 

cr . (xy) 

= (cr•x) (cr•y), all x, y E F (S) . It follm.;s that WS acts· 
w 

as a group of ring automorphisms on q;)F ( S) . We let (IF (S) S 
~v 

denote the fixed ring under this action, that is ~F(S) S 

= {x E QF(S) :cr • x = x, all cr E WS}. Then there is a~-· 

w 
space epimorphism p:QF(S) + ~F{S) S given by p(x) 

= I W 1-l I cr • x. Note that the restriction of p to 
s crE~vs 
w 

~F(S) S is the identity; moreover, p(xp(y)) = p(x)p(y), all 

x, y E ~F (S). If a E P and S = Sa' we denote o = o. . a .-

Thus 8 (x) = v-1 ) cr • x, 
·a a :W 

oE a 
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Proposition 5.8. Let a E P. 

w 
= 0 ·a Moreover, 

the map Xa=_tdF(Sa) a __ -+ QAy(G)ea' given by X (x) = 7~ (x) 1 a a 

all X E 
vJ 

(lF ( S ) a 1 

a is a surjective ~-algebra homomorphism. 

Proof. If a E W 1 then by Corollary 3.4 [S ~x] = [S ~x~] 1 a a a v 

all x E F(Sa), hence ~ (x} = ~ (x) all x E F(S). a a a ' a 
But 

then, v-1 \ w (x } = ·v'""!' 1 \ ~ P (x) = a l . a a a l 1~ a (x) = '-/J (x) . 
a a crEWa oEWa a 

The 

first result follows, since F (S ) 
a Furthermore 

the surjectivity of 

is surjective. 

let x, y E F (S ) • a 

together with imply that 

To see that is an algebra homorphisrn, 

Then 

Xa(p(x)p(y}) = Xa(p(x • p(y))} 

= \);a (x • P (y) ) 

V-1 I = 11; (xy ) 
a ·a a 

crEW a 

= v- 2 I [ S 1 xy ] e 
a EW a a a 

a a 

= (V-1 [s ,x]e ) (V- 1 [s ,x]e ) 
a a a a a a 

= ·~a ( x) . ·JJ a ( Y) = X a ( o ( x) ) • X a ( P ( y) ) . 



Since the elements {p(x):x E F(S )} 
a span 

is a ~-algebra homomorphism~ as asserted. 

w 
~F(S ) a 

a 

As v.re shall presently show, each Xa is an 

isomorphism. 

Lemma 5. 9. Let S E G and x, y E F (S) . Then 

and only if p(x) = p (y) . 

xrvSy 

Proof "*) • Suppose there is with 0 some CL E ws a (x) 

Then 

-1 \ 0 0 
IWsl L cr a (x) 

crEWs 

-1 0 = IWsl I (acr) (x) 
oEWs 

-1 0 
= INs I L cr (x) = p (x) • 

oE 1-Js 

= 

<=} Suppose p(x) = 

OF (S) , the identity 

p (y) . Since 

I cro<x> = 
crEWs 

F(S) is a ~-basis of 

I cr
0 

(y) implies that 
crEWs 

-i 
T E WS. If a = crT E WS, 

0 o (x) 
0 = T (y) for some o, 

then 0 
a (x) = y. Thus xrvsY· 

Lemma 5.10. Let xl' ... ' X n E F (Sa), with x.~ x. 
~ a J 

i ~ j . Then {[Sa,xi]ea:l < i < n} is a linearly inde-- -
pendent set in ~AF(G)ea. 

Proof. For any i, Lemma 5.1 implies that [S ,x.]e a ~ a 

= L \b [S ,x.] [Sb,l] = ), [S ,x.] [S ,1] 
b 

,a a ~ a,a a ~ a 
<a 

if 
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0 

if 

y. 

0 
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+ L 7\b [ s , x. ] [ sb, 1] = [ s , x. ] + I c . [ s , y. ] , some 
b<a , a a 1. a 1. j =l J aj J 

a. <a E P, 
J 

y. E F (S ) • 
J a. 

Therefore, if there is a 

dependence relation 

J 
n 
I d.[S ,x.]e = 0 

i=l l. a l. a 
(where d. E ~ 

l. 

without loss of generality), then Corollary 3.4 together with 

n 
the above.yields a dependence relation l d.[S ,x.] = 0. 

. 1 l. a l. 
l.= 

By Theorem 3.9, and the assumption on the 

that d. = 0, 
l. 

all i. 

Theorem 5.11. For any a E P, the map 
w 

X.' 
l. 

it follows 

Xa:QF(Sa) a+ ~Ap(G)ea is a ~-algebra isomorphism. 

Proof. All that remains is injectivity. If R is a 
a 

0 

set of representatives for ~ a in then by Lemma 5.9, 

wa 
{pa(x) :x ERa} spans ~F(Sa) as a 0-space. By Lemma 5. 1 0 , 

the set {XaPa(x):x ERa}= {V-1 [s ,x]e :x E R} a a a a is linearly 

independent over ~. The result follows. 

Theorem 5.12. Let G be a finite group, and let F:G + AM 

be an additive contravariant functor. Then the injections 

w 
Xa:OF(Sa) a+ ~AF(G)ea induce a ~-algebra isomorphism 

w 
X= (X ): IT ~F(Sa) a+ ~AF(G). 

a aEP 

In particular, if every transitive G-set is normal over F, 

then 



~~(G) 'V IT ~F(S ) . 
aEP a 

We remark that the only denominators used in the 

proof that X is an isomorphism were divisors of powers of 

jGj. Thus this theorem is valid upon replacing 0 by any 

field K, where char(K) j jGj. 

Several ring theoretic properties of O~(G) now 

become transparent. We single out the following. 
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Corollary 5.13. Suppose F:G + AB is an additive contra-

variant functor satisfying 

i) for all S E G, F(S) is torsion, and 

ii) every transitive G-set is normal over F. Then ~AF(G) 

is a von Neumann regular ring. 

" Proof. If S E G, then F(S) is a torsion abelian group, 

hence it is locally finite. By a theorem of Villamayor 

(1958), the group algebra ~F(S) is von Neumann regular. 

Since the product of regular rings is again a regular ring, 

the result follows from the second part of Theorem 5.12. 0 

" Corollary 5.14. If F:G + AB is any contravariant additive 

functor, then J (0~ (G)) = 0. 

Proof. By· a result of Montgomery (1976) 1 if R is any 

ring acted upon by a finite group w of ring automorphism s, 

and if lwl-1 E then J(RH) J (R) n w Applying this R, = R . 

to R = elF (Sa) and w = vq 
a' it follows from Passman (1971, 
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p. 73) that J(~F(Sa) a) = 0. Since the radical respects 

products of rings, the result is a direct consequence of 

Theorem 5.12. 0 

The Structure of ~~(G/H) 

Theorem 5.12 effectively computes ~~(G). We shall 

now indicate a construction which will permit the computation 

of ~~(G/H), for any subgroup H <G. 

Definition 5.15. If 

fibered product of G 

H < G 

with S, 

and S is an H-set, then the 

H denoted Gx S, is the 

G-set of (equivalence classes of) pairs (g,s), where g E G, 

-1 s E S, with the identification (g,s) = (gh ,hs), all 

h E H. The G-action on GxHS arises from multiplication 

in the first component. 

The notation GxHS is not standard; this is usually 

written as GxHS. However, we have already used the later 

to denote to the pullback of G/H-sets. Thus, to avoid 

ambiguity, we will be· non-standard .. 

Given two H-sets S and T, and an H-map ¢:S + T, 

the map H H H lx ~:Gx S + Gx T given by 

is a well-defined G-map. 

Lemma 5.16. The correspondences 

(lxH¢) (g,s) = (g,¢(s)) 

H S .... Gx S, and H lx o 

define a covariant, sum preserving functor from H to G. 



Proof. To say that GxH(*) is sum preserving is to say 

there is a natural iso-that, given any H-sets S and T ,· 

morphism of G-sets (GxHS) U (GxHT) ~ H • Gx (S U T) . This is 

clear. 
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0 

It follows that if FE AMG, 

H 

then 
H H F o Gx (*) E .AM . 

For notation, let FH = F o Gx (*). Thus, for any H-set S, 

FH(S) = F(GxHS), and for any H-map ¢:S ~ T, FH(¢) 

H 0 = (lx ~) :FH(T) ~ FH(S). The result we are after is to show 

that for any subgroup H ~ G, there is an isomorphism be-

tween ~(G/H) and ~ (H/H). We must first introduce some 
H 

notation. 

Let H ~ G, and let S be a G-set. Suppose there 

is a G-map Ct.: S ~ G/H. Denote by s = {x E a 
S:a(x) = lH}. 

Plainly, s is an H-set. Denote by lla the G-map GxHS 
·:1 a 

~ s given by ll (g,s) = g . s, all (g, s) E GxHS . It 
a a 

follows easily that lla is a G-isomorphism. Indeed, we are 

just formalizing the well-known fact that the categories of 

H-sets and G-sets over G/H are equivalent. Define a 

function .. H = ;\:AF (G/H) ~ ~ (H/H) by i\ ( [S,ct.,x]) 
H 

0 = [S ,~ (x)]H, where we use the notation 
a ct 

elements of ~ (H/H). Since x E F(S), 
H 

[*,*]H 

0 
ll_ (x) E 

u. 

to denote 

= FH(S ), so our definition makes sense. We are ready to 
a 

attack the main result of this section. 



Theorem 5.17. For any functor FE AMG, and subgroup 

H .2_ G, the function 

isomorphism. 

~ (H/H) 
H 

is a ring 
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Proof. We shall show that A is a well defined bijection, 

and leave the straightforward verification.that A preserves 

sums and products to the reader. Let [S,a,x], [T,S,y] 

E ~ (G/H). 

i) A is well defined. If 

choose a G-isomorphism ¢:S + T with 

0 0 we must show (sa,~a(x)) 'V (T 8 ,~ 8 (y)) 

if E S s a' then S¢(s) = a(s) = lH, 

(S,a,x) 'V (T,S,y), then 

a= B¢ and ¢ 0 (y) = x. 

in (H,FH). Note that 

so ¢ (s) E T
8

• 

Similarly, if t E T8, then ¢-l(t) E Sa. Thus, 

is an H-isomorphism sa+ T8. We claim ~S(lxH~) =¢~a· 
H H 

Indeed, if (g,s) E Gx sa' then f.ls (~x 1-JJ) (g ,s) = f-ls (g ,¢ (s)) 

H 0 0 0 0 
= g¢(s) = ¢(gs) = ¢~a(g,s). Thus (lx W) ~S(y) =~a¢ (y) 

0 0 0 
= ~a(x). It follows that ~: (Sa,~a(x)) + (T 6 ,f.l 6 (y)) is an 

isomorphism. 

ii) A is injective. Suppose that A([S,a,x]) 

= A ( [ T , B , y] ) , that i s [ s:t. , ~ ~ ( x ) ] H = [ T 6 , ~ ~ ( y ) ] H . BY 

Corollary 3.4, there is an H-isomorphism ~:Sa + TB with 

(lxH 1~) Ofl~ (y) = ~~ (x). Let ¢ = ~B o (lxH'J) o J..!~ 1 :s + T. 

Then ¢ is a G-isomorphisrn, with ¢
0

(y) 

= (,,-l) 0 (lxH'JJ) 0 (,, ) 0 (y) = (,,-l) 0 (,, ) 0 (x) = x. To see that 
~a T ~s ~:t. ~a 

a = 5¢, let s E S, and choose g E G with CJ. (s) = gH. 
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H -1 

Then S¢(s) = Bu 3 (lx ~)Ua (s) = H -1 8 u 
13 

( lx 1p ) ( g , g s ) 

-1 -1 
= Bu

8
(g,I!J(g s))= 6(gl!J(g s)) = gS(w(g-1 s)) = gH = a(s). 

Thus ¢:(S,a,x) -+ (T,S,y) is an isomorphism. 

iii) fL is surjective. Let [T,y]HE ~H (H/H) . 

Denote s = H Gx T, and define a:S -+ G/H by a(g,t) = gH. 

Then is a well defined G-map with sa { (h, t) E 
H a = Gx T: 

h E H,t E T}. Since (h,t) = (l,ht), the map tjJ·S -+ T . a 

given by tjJ(h,t) = ht is an H-isomorphism. Moreover, 

H H H 0 
Ua ~ lx tjJ:Gx Sa-+ S. Thus [T,y]H = [Sa' (lx tjJ) (y)] 

0 = [Sa,ua(y)] = IL([S,a,y]). 0 

We can combine this result with Theorem 5.12 to de-

termine the structure of OAF(G/H). If K < H ~ G, then 

there is an embedding e:AutH(H/K) -+ AutG(G/K) given by 

8 (¢) (gK) = g¢(1K), all ¢ E AutH(H/K), gK E G/K. Denote 

by ~ = {8 (¢):¢ E AutH(H/K)} = ime. Upon identifying 

AutH(H/K) with NH(K)/K and AutG(G/K) with NG(K)/K, 

it is easy to see that 9 corresponds to the inclusion of 

NH (K) /K into NG (K) /K. As before, ~~ will act on the 

group F(G/K), and thus also act on the group algebra 

~F (G/K) . 

Theorem 5.18. Let F:G -+ AM be an additive contravariant 

functor. Let H < G. Denote by P(H) a set of representa-

tives of conjugacy classes of subgroups of H. Then there 



~ 
is a ~-algebra isomorphism: O~(G/H) ~ IT QF(G/K) K 

KEP (H) 

Proof. For K E P(H), set WK = {lxH¢:¢ E AutH(H/K)} 

c AutG(GxHH/K). By 5.12 and 5.17, ~~(G/H) ~ ~AF (H/H) 
w 

IT .OFH(H/K) K = 
KEP (H) 

W H 
IT ~F(GxHH/K) K However, for any 

KE P (H) 

K E P(H), GxHH/K ~ G/K (via (g,hK) + ghK). Furthermore, 

this isomorphism carries the automorphism lxH¢ of GxHH/K 

to the automorphism 8 (¢) of G/K; hence, it carries ~vK 

onto ~· It follows that 
w:: 

~ elF(G/K) K, 

for each K. 

Corollary 5.19. If F is any additive contravariant 

functor from G to AB, and S E G, then J(OAF(S)) = 0. 

Proof. Expressing S as a disjoint union of transitive 

G-sets, the result follows directly from 3.6, 5.14, and 

5.17. 
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CHAPTER 6 

PRIME IDEALS IN THE F-BURNSIDE RING 

Throughout this chapter we fix a finite group G, 

and a functor F E AMG such that every transitive G-set is 

normal over F. In this setting, most of the structural 

results for A(G) can be extended in some fashion to ~(G). 

The object of this chapter is to illustrate this principle. 

An Embedding Theorem for ~(G) 

For a E P, we let 

isomorphism of Chapter 5. 

Xa:~F(Sa) + OAF(G)ea be the 

-1 Thus, X (x) = V [S ,x]e , all a a a a 

X E F (S ) • a By Theorem 5.12, the product map x = (x ) : a 

IT QF(Sa) + ~AF(G) is an isomorphism. We let f:~AF(G) 
aEP 

+ IT OF(S ) be the inverse of X· For bE P, we have the 
aEP a 

projection homomorphism rb: IT QF(S ) + QF(Sb). 
aEP a 

vle denote by 

rb the composition rb=rbr:~AF(G) + t!F(Sb). Evidently, 

each rb is a surjective O-algebra homorphism. 

Lemma 6.1. For any a E P He have 

(a) r ( [ s , x] e ) = v x, all x E F ( s ) , a a a a 

(b) ~aXa is the identity on ~F(Sa), 

(c) y r (X) = X e I a 11 X E ~AF (G) . ,,a a a 
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Proof. (a) If X E F(S )I then X= rx(x) a 
= r (V -l [ s I x] e ) • 

a a a 

(b) Since xl~F(S ) = Xa' 
a 

it follows that for any 

X E ~F (S ) I a r X (x) = r rx(x) = r (x) = x. a a a a 

(c) Let X E ~~(G).. Then X = X • 1 = L xeb, 
bEP 

where xeb E ~AF(G)eb. By Lemma 5.7 1 there are elements 

yb E ~F(Sb) such that xb(yb) = xeb, all bE P. Then 

xara(x) = xara[~PxebJ = xara[~Pxb<yb)) = xararx[~Pyb) 
= xara[~Pyb) = Xa(ya) = xe .. a 

Lemma 6.2. Let g = !GI, and suppose 0 ~ n E ~ satis-

fies 2 
g ln. Then for any a E P and x E F (Sa ) , 

Proof. ~vrite 
2 n = g m, some mE Z. By 6.l(c), X (nx) 

a 

= nv-1 [s ,x]e 
a a a 

= nV-l[S ,x]e2 =X r (nV-l[S ,x]e ). By the 
a a a a a a a a 

injectivity of Xa' nx = f (nV-l[S ,x]e ). By 2.2(a), (b), 
a a a a 

~t follows that gv~1 
E ~, and gea E A(G) c AF(G); 

nv~1 [sa,x]ea = m(gv~ 1 ) [Sa,x] (gea) E ~(G). Thus, 

nx E r a (AF (G) ) • 

Lemma 6.3. r (~(G)) c II ZF ( S ) • 
aEP a 

hence, 

0 

0 

Proof. Let b E P and x E F (Sb). By 3.ll(c) it suffices 

to show that ~a([Sb,x]) E ~F(Sa), all a E P. By 6.l(c) 

-1 
and 2. 5 (a), x r ( [Sb,x]) = [Sb,xJ e = V [Sb,x] [ S ,1] e a a a a a a 

-1 0 = Va [Sbxsa,~b(x)]ea. By 2.2(c), sb x sa is a union of 
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V copies of b,a together with various other Sc' where 

c < a. Thus, using the additivity of F together with 5.2, 

it follows that 

Since X a is 

v b,a 1 = L v- [S ,x.]e I 
. 1 a a 1 a J.= 

v 

some 

1 < i 

[v l b,a b,a 
= Y X (x. ) = X L X. • 

.~1 a J. a . 1 J. J.= J.= 

injective, fa([Sb,x]) = 

x. E F (S ) , J. a 

< vb - ,a 

v b,a 
I x. E ~F (Sa) . 

. 1 J. J.= 

Combining these lemmas, we obtain the following 

theorem. 

Theorem 6. 4. IT ( 1 G 1 
2~ ) F ( s ) c r (A_ ( G ) ) c IT ZF ( s > • 

aE P a -""F aE P a 

Corollary 6.5. The group IT ZF(S )/f(AF(G)) 
aEP a 

is 

IG 1
2
-torsion. 

Prime Ideals 

0 

We wish to compute almost all of the prime ideals of 

AF(G). Note that when F =I, the proof of Lemma 6.3 shows 

that fa([Sb,l]) = Vb,a' all a, bE P. Especially, the 
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set of maps {r :a E P} a is the same set used by Dress (1969) 

to describe the prime ideals of A(G) ~ AI(G). Following 

his notation, for any a E P, and prime 0 < p E ~' we let 

q(a,p) = {x E A(G):ra (x) _ O(mod p)}, and for p = 0, 

q(a,O) = kerra· The following description of the prime ideals 

of A(G) is sufficient for our purposes. 

Proposition .6.6. Let ~ be a prime ideal of A(G). Then 

there is a unique minimal element a E P (w.r.t. < ) such 

that if p = char(A(G)/q), 

(a} q = q(a,p), 

(b) for any b ~ a E P, [Sb,l] E q (a,p), 

(c) [Sa,l] ~ q(a,p). 

Proof. Dress (1969, p. 215). 0 

When the prime ideal q of A(G) is written in the 

form q (a,p), where a E P is the element given in the 

Proposition, we will say that q is in standard form. 

Note that this form is unique: if q(a,p) = q(b,p') are both 

in standard form, then a = b and p = p'. ~ve now extend 

this result to ~(G). 

Proposition 6.7. Let Q be a prime ideal of AF(G), 

such that Q n ~ = ~I where p t{ JGI (possibly p = 0) • 

Then there is a unique minimal element a E p (w.r.t. < ) 

such that 



{a) for any b < a E P, and any X E F ( S, ) I [Sb,x] E Q, 
D 

{b) for X E F (Sa) , if also -1 
E F(Sa), then any X 

[S ,x] a rt Q. 

Proof. Since Q n A {G) is a prime ideal of A(G) lying 

over pZ I we may apply 6.6, and write Q 11 A(G) = q(a,p), 

in standard form. 

(a) Induce on b < a E P. If a = 1, the result 

is clear, so we may assume a> 1. By 6.6(b), [Sb,l] E Q, 

all b <a. If b = 1, then by 5.6, [s1 ,x] [s1 ,1J 
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= v
1

[s1 ,xl. Since [s1 ,1] E Q and pJ v 1 r it follows that 

[s1 ,xl E Q. For the induction step, assume 1 < b < a, and 

that for all c < b, y E F(Sc)' 

by 5. 6, [Sb,x] [Sb,l] = Vb[Sb,x] 

we have [Sc,y] E Q. 
n 

+ l [Sb ,y.], where 
j=l j J 

b. < b, y. E F(sb.) all j. But [Sb,l] E Q, and all 
J J J 

[Sb ,y.] E Q by the induction hypothesis. Therefore 
j J 

Vb[Sb,x] E Q, and since p t Vb, [Sb,x] E Q. 

(b) If in fact [Sa,x] E Q, then by Lemma 5.6, 
-1 n 

[Sa,x] [Sa,x ] = V [S ,1] + L [S ,x.], where a. <a, 
a a . 1 a. J J 

x. E F(S ) . 
J aj 

J= J 

By part (a), all [sa.'xj] E Q. But this 
J 

Then, 

implies that V [S ,1] E Q n A(G) = q(a,p), which contradicts a a 

p A' va and [S ,1] E Q • . a 

If b E P also satisfies (a) and (b) , then 

[Sa,l] [Sb,l] = L V b [S ,1] 1. Q. Thus, there is some 
~< b a 1 1 C C '-'_a, 

c < a, b such that [Sc,l] 1. Q. By (a), a = b = c. 0 



For a prime ideal Q of ~(G) such that Q C1 ~ 

= p~, where p) IGI, let a E P be the element given in 

the Proposition. Define V(a,Q) = {x E ZF(Sa): IGinx 

E ra(Q), some n > 0}. 
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Lemma 6.8. In the setting above, V(a,Q) is a prirne"ideal 

of ~F(Sa) lying over pZ. 

Proof. Set g = jGj. To see that V(a,Q) is an ideal, 

let V(a,Q), ZF (Sa) . 
n 

X E y E Say gx=r (z), some a 

z E Q, n > 0. By Lemma 6.2, 2 = r (w) ' wE AF (G) . g y some 
a 

Then gn+2 (xy) n 2 r (w) = r (zw)' = g xg y = r (z) . so a a a 

xy E V(a,Q). Since V (a ,Q) is additively closed, it is 

ideal of ~F(Sa). To see that V(a,Q) is prime, let x, 

y E ZF (Sa) 

Since gea 

3 = g z(gea) 

with gn(xy) = r (z), 
a 

n+4 
E ~(G), Xa(g xy) = 

some z E Q, n > 0 • 

4 n 4 
g Xa(g xy) = g x r (z) a a 

2 
E Q. As in 6.2, it follows that Xa(g x), 

an 

n+2 
Xa(g y) 

2 n+2 
E AF(G), thus, one of Xa(g x), Xa(g y) E Q. 

Applying 
2 

ra' and 6.l(b), either g x E ra(Q) or 

gn+ 2y E ra(Q) I that is, X E V(a,Q) or y E V(a,Q). Thus 

V(a,Q) is a prime ideal. 

To see that V(a,Q) C1 Z = pZ, first let x = t 

lF ( s ) E v (a I Q) n z ' 
a 

n ~ 0, z E Q. Then 

with t E z. Say n 
g X = 

n+l 
Xa (g x) 

n+l = g txa (lF(S ) 
a 
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X (gn+lx) =X r (gz) = (ge )z E Q, so it follows from the 
a a a a 

choice of a E p and Proposition 6.6, that 

n -1 Again by 6.6, [ s 1 1] ~ Q, g t ( gV ) [ S ,1] E Q. so 
a a a 

nt ( v-1) g g a E Q n ~ = p:&. Since p )' I G I' we must have Pit, 

establishing the inclusion V(a,Q) () Z c p~. Conversely, 

since Q n Z = pZ, 

= ValF(S )' we have 
a 

= ra((gv~1 )p[Sa,l]) 

The result follows. 

For an a E 

fine R(a,L) = {x E 

Plainly, R(a,L) is 

Lemma 6.9. Let Q 

on z = p~, where 

given in Proposition 

p[Sa,l] E Q. Then, using ra ([Sa,l]) 

-1 
g(p • 1F(S) = (gVa )pValF(S ) 

a a 

so 

p and prime ideal L of ~F (Sa) , de-

~(G): r a (x) E L} = r-1 (L) n ~(G). a 

a prime ideal of ~(G). 

be a prime ideal of ~(G) such that 

p ~ I G I • Let a E p be the element 

6.7. Then Q = R(a,V(a,Q)). 

Proof. We must show that Q = {x E ~(G): r a (x) E V (a, Q) } . 

c:) Let x E Q. Then fa(x) E ra(Q), so fa(x) E V(a,Q). 

~) Let X E ~(G) be such that ra(x) e: V (a,Q). If 

I G I, then n r a (y) I Q, 0. g = g r (x) = some y E n > a -
It follows 

n 
= Xafa(g 

n+l x) Xara(gy) that (gea) g x = 

= (gea)y E Q. However, g E Q (since p ~ g) I and 

therefore by 6.6 and the choice of a E P, gea ~ Q. 

Thus X E Q. 

0 



Lemma 6.10. Let a E P, and let L be a prime ideal of 

~F(S) with L n ~ = p~. Then R(a,L) n A(G) = q(a,p). a 

Proof. C) If x E R(a,L) n A(G), then fa(x) E L n Z 

= pZ , so x E q (a , p) . 

:::>) If xEq(a,p), then r (x) E pZ c L, 
a so 

Lemma 6.11. Let a E P. Suppose L
1

, L
2 

are prime 

ideals of ~F(S ), where L. n z = p.Z, P; ~ IGI, a ~ ~ ...... 
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0 

Proof. Set g = IG I, and let Then 
2 

g x = r (y) , a 

some y E ~(G), by Lemma 6.2. Since y E R(a,L1 ) = R(a,L 2 ), 

we have g 2x = ra(y) E L2 . Since p 2 ~ g, we conclude that 

x E L2 , establishing L1 c L2 . By a symmetrical argument, 

0 

Theor5n 6.12. Let F:G +ill~ be a contravariant additive 

functor such that every transitive G-set is normal over F. 

Let q(a,p) be a prime ideal of A(G) in standard form, 

with p ~ IGI. Then there is a bijective correspondence be-

tween the set of prime ideals of 

and the set of prime ideals of 

~(G) 

ZF (S ) a 

lying over q(a,p) 

lying over pZ. 

Proof. If L is a prime ideal of ~F(Sa) lying over pZ, 

then by 6.10, R(a,L) is a prime ideal of ~(G) lying over 

q(a,p). The correspondence L + R(a,L) is injective by 

6.11, and surjective by 6.8 and 6.9. 
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The Extension ~(G)/A(G) 

We shall finish this chapter by describing those 

normal functors F for which the ring extension ~(G)/A(G) 

is integral. Indeed, this will occur precisely when each of 

the groups F(S) 1 S E G1 is torsion. 

For any integer n > 0, we let Sn denote the 

product of n copies of S, and 
n 7T .:S +S n,l. will denote 

projection onto the ith component. 

Lemma 6.13. Let F be a normal functor, S E G and 

F (S) . Then [S
1
x]n n 0 n for all X E = [ S , 7T n, 1 (x ) ] 1 0 < n E 

Proof. Induction on n. The formula being clear for 

z. 

n = 1, assume n > 1, and that the result holds for lesser 

n. Let t:Sn + sn be the G-automorphism which interchanges 

the first two components, and is the identity on every other 

component. Clearly, 7Tn
12 

= "n,lt, so by normality of F, 

0 0 0 0 
7Tn, 2 (y) = t Tin

1
l (y) = 7Tn,l (y) 1 all y E S. Thus, 

n n-1 0 n-1 
[S,x] = [S,x] [S ,7Tn-l,l (x )] 

n 0 0 n-1 
= [S 1 7Tn,l (x) • -;rn,2 (x ) ] 

r n 0 ( ) 0 ( n-1) ] = tS ,rr 1 X • ~ 1 X n, n1 
n 0 n = [S ,TI 1 (x )]. n, 



Theorem 6.14. Let F E AMG be a normal functor. Then 

the extension ~(G)/A(G) is integral if and only if for 

every G-set s, F(S) is a torsion group. 

Proof ~). Assume AF(G)/A(G) is integral. Since 

A(G)/Z is already integral, so is ~{G)/Z. By way of 

contradiction suppose that for some G-set s, F(S) is not 

torsion. By additivity of F, this implies that for some 
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a E P, F (S ) 
a is not torsion. Pick X E F(S ) of infinite a 

Since xj =I 
k if j -1: k, normality of F implies X order. 

. k 
that xJ ~ax . By 

n-1 
+ IckXkEZ[X] 

k=O 

integrality, choose <i>(X) = xn 

with ¢([S ,x]) = 0, that is [S ,xJn a a 

n-1 
+ L ck[S ,x]k + c 0 = 0. Multiplying both sides by Vaea 

k=l a 

and applying 5.5 and 2.5(a), this yields 

n-1 k k 
V~[S ,xn]e + I ckv [Sa,x ]ea + co[S ,l]e = 0, 

a a a k=l a a a 

which is a contradiction to 5.10. 0 

<=) By 3.ll(c), it suffices to show that if a E P 

and 

(say) n 
X = 1, 

then [S ,x] 
a 

then by 6.13, 

is integral over A(G). 

n n 0 n 
[ S 1 X] = [ S 1 'IT 

1 
(X ) 1 a a n, 

n = [Sa,l] E A(G). Thus [Sa,x] satisfies the monic 

polynomial Xn- [S~,l] E A(G) [X]. 

If 
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Finally, we wish to make a statement about the 

Boolean algebra of idempotents of AF(G). 

Theorem 6.15. Let F:G ~ AB be a normal, additive, con-

travariant functor. Then A(G) and AF(G) contain exactly 

the same idempotents. 

Proof. By a theorem of Kaplansky (see Passman 1971), 

given any group H, · the only idempotents in the group 

algebra ZH are 0, 1. Thus if e E ~(G) is idempotent, 

then for any b E P, rb(e) E {0,1}. Therefore 

r(e) E II Z . 1F (S ) . It follows from the definition of 
aEP a 

that, e = xr(e) E ~A(G). Since also e E AF(G), we must 

have e E A(G). The other inclusion is trivial. 

X 

0 



CHAPTER 7 

THE BRAUER RING OF A FIELD 

In this chapter we begin the study of the tensor 

product of separable algebras over a field. Our guiding 

question is this: is there a natural ring into which we 

may embed the Brauer group as a subgroup of its unit group? 

Of course, one should expect this ring to yield information 

about separable algebras which the Brauer group does not, 

and one should hope to be able to recover the Brauer group 

from purely ring theoretic properties. Although ·the material 

presented here may seem unrelated to what has come before, 

the necessary tie up will come next chapter. ~ve begin our 

discussion with a generalization of a well known result on 

the tensor product of two subfields of a finite Galois 

extension. 

Tensor Products of Separable Algebras 

Let R be a commutative ring, with 0, 1 its only 

idempotents (R is· connected). Let S be a Galois exten-

sion of R, and let s
1

, s 2 be separable, G-strong sub­

algebras of S, where G is the Galois group of S/R (see 

Chase, Harrison and Rosenberg (1965) for definitions). Let 

H. < G be the Galois group of S/S., i = 1, 2. Choose 
J. - J. 
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tr • • I a E G 
m to obtain a double coset decomposition 

a. 
by ¢ (u@ v) = 

denotes the compositum of 

(ua 1 (v) , ... , uam (v) ) , 

s1 and cri (S 2 ) in 

¢ is a well defined R-algebra homomorphism. 

where sls2 
~ 

S. Plainly, 

Proposition 7.1. ¢ is an injective R-algebra homorphism. 

Proof. Suppose L. u. fX\ v. E ker¢, so that 'i'. u. a. (v. ) = 0 
~ ~\.::;J ~ {..~ ~ J ~ 

for all 1 ~ j < m. Let T E G; find a E H1 ,. 8 E H2 so 

that T = cwJ. B for some j. Then L- u. T (v.) = a <l:. u. a. (v.)) 
~ ~ ~ ~ ~ J ~ 

= 0, showing 

{1) 'i'.u.T(v.) = 0 for all T E G. 
{..~ ~ ~ 

If E denotes the S-algebra of all functions from G to S 

under pointwise operations, then the map h: S@ RS + E given 

by h (u@ v) (a) = u • a (v) is an S-algebra isomorphism, by 

Chase et al. (1965, p. 4). By ( 1) , l . u. fX\ v. E kerh = 0. 0 ~ ~ \.::;J ~ 

Under rather non-restrictive conditions, ¢ will also 

be surjective. 

Proposition 7.2. Let g = JG I. Suppose that 

is a unit in R. Then ¢ is an isomorphism. 

g = g • 1 
R 



Proof. Since S/R is Galois~ there are elements 

n 
xl' ••• J. X n; yl, • • • I Yn of s such that I x. a (y.) 

. 1 ~ ~ 
~= 

= <\ , all a E G. Set x! = piH P (xi) and y!. 
tO ~ 1 ~J 

I -1 Galois theory, x! y!. 1 = ya. (y. ) . By E sl' E 52 I 
yEH J ~ ~ ~J 

2 -1 
< n, 1 2. j < m. Set gk = IHl n crkH2crk I, 1 < k < m. We 

claim that 

n 
(2) I x ~ ak (y! . ) = gko J. , k, 1 < j , k < m. 

i=l ~ ~J 

Indeed, 

\,x!ak(y!.) [. ~ ~ ~J 

= 
-1 -1 \' \' p(\.x.p akya. (y.)) [. /. {.~ ~ J ~ 

pEHl pEH2 

= 

by the condition on the xi and yi. If j ~ k, then crj 

and crk are distinct double coset representatives, so that 
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< 

-1 -1 
p OkYOj ~ 1, all p and y, and (2) holds in this case. 

If j = k I 

-1 
n akH2ak 

all cases. 

then 

Since 

Since 

is a unit in 

-1 -1 
p crkycrj = 1 ;ff -l 

...... p = ok '(Ok E Hl 

p uniquely determines y, (2) holds in 

divides 

R, all 

g, 

k. 

our hypothesis implies that 

Define ek = g~ 1 Iixj_@Yj_k 

i 
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E s 1 (9 Rs 2 . From (2) it follows that ¢(ek)= (0, ... , 0, 1, 

0, ... , 0), with 1 in the kth place. The surjectivity 

of ¢ follows easily. 

We remark that implicit in the proof of 7.2 is the 

construction of the indecomposable idernpotents of s 1 0 Rs 2 , 

namely, the ek. When R and S are both fields, there is 

an easier proof. 

0 

Proposition 7.3. If R and S are fields, then ¢ is an 

isomorphism. 
cr 

Proof. + s 1s 2m~ we may prove 

equality by counting dimensions. Since ¢ is injective, 

dim(irn¢) = (dim s 1 ) · (dim s 2 ). Moreover, by Rotman (1978, 

p. 17), 

= 
m r [G:H

1 
n 

i=l 

cr. 
~H ] = 

2 

The Brauer Ring 

0 

Let E/F be a (not necessarily finite) Galois exten-

sion of fields. Let SEP(E,F) be the category of separable 

F-algebras A, with the center of A (denoted Z(A)) iso-

morphic with a finite product of finite dimensional subfields 

of E. If the extension E/F is understood, we abbreviate 

SEP(E,F) as SEP. Plainly, SEP is closed under the forma-

tion of algebra procucts. It is also closed under tensor 
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products. Indeed, let A, B E SEP with Z (A) ~ Kl + . . . 
+ K and Z(B) = L + + L with each K. I L. a 

m 1 n ~ J 

finite separable extensio~ of F. Since any pair K. I L. 
~ J 

can be embedded in a finite Galois extension of F contained 

in E, it follows that z (A@ FB) ~ z (A)@ Fz (B) 

"" IT K. @FL., which in turn is isomorphic with a finite 
= i,j ~ J 

product of finite dimensional subfields of E by Proposition 

7.3. It follows that we may form the associated Grothendieck-

ring of this category, as in Bass (1968, pp. 344-47). Thus, 

denote S(E,F) = K0SEP(E,F). We denote the image of an 

object A E SEP(E,F) in S(E,F) by [A]. The following 

proposition collects some basic facts. 

Proposition 7.4. (a) For elements [A], [B] in S (E,F), 

[A] + (B] = [A + B] and [A] (B] = [A@ FB]. Also, lS (E,F) 

= [F] • 

(b) Every element of S(E,F) can be written in the 

form [A] - (B] for some A, B E SEP. 

(c) If A, BE SEP, then [A] = (B] if and only 

if A ~ B as F-algebras. 

Proof. (a), (b) and the if part of (c) are direct conse-

quences of the definitions. For the only if part of (c), 

suppose (A] = [B] . Then there is an algebra C E SEP 

with A+ C ~ B + C as F-algebras. Since separable F-

algebras are finite dimensional and semisimple, the uniqueness 
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statement of Wedderburn's theorem implies that A~ B as 

F-algebras. 0 

Note that if A is a finite dimensional, simple F-

algebra, with Z(A) isomorphic to a (finite separable) sub-

field of E, then in particular, A is a central simple 

Z(A)-algebra, and Z(A) is a separable F-algebra. Since 

central simple algebras are separable, transitivity of 

separability implies that A is a separable F-algebra. It 

follows that A E SEP. Thus any product of matrix algebras, . 
M (D

1
) + ... + M (D), with each D. a division algebra, 

n1 nr r l 

and Z(D.) isomorphic to a finite dimensional subfield of 
l 

E, is in SEP. Conversely, by Wedderburn's theorem, any 

algebra B E SEP has this form uniquely up to F-isomorphism. 

This discussion, together with 7.4, establishes the following 

proposition. 

Proposition 7.5. As an abelian group, S(E,F) is free on 

the set {[A] :A E SEP, A is simple}. 

Proposition 7.6. There is a group endomorphism 8 of 

S(E,F) such that if A~ Mn(D) as F-algebras, where DE SEP 

is a division algebra, then S([A]) = [D]. The image of 6 

is the subgroup of S(E,F) that is freely generated by 

{ [D] :DE SEP is a division algebra}. Moreover, for all u, 

v E S(E,F), we have S(S(u)) = g(u) and 3(uv) 

= 3(3(u) • 3(v)). 



Proof. ·If A E SEP is simple, then A 'V M (D) I 
= n 

where 

is a division algebra with Z(A) ~ Z(D). Thus, DE SEP. 

Moreover, if B ~ Mm(D') E SEP with A rv B, then by 

Wedderburns theoerm, D~D'. It follows from 7.5 that the 

correspondence [A] ~ [D] gives a well defined group endo-

morphism B of S(E,F) such that S([M (D)]) = [D]. The n 

statement regarding the image of S is clear. Since 

S(S([Mn(D)])) = S([D]) = [D] = S([Mn(D)]), it follows from 

7.5 that S2 (u) = S(u), all u E S(E,F). Finally, let 

B 'V M (D I) = m be in SEP, where D, D' are 

division algebras. Since D@ FD 1 is semi simple, we can 

write D@FD 1 ~Mn (D1 ) .;_ ... -i-M (D). Then A@FB 
1 nr r 

"' (Mn (F) @ FD) @ F (Mm (F) @ FD I ) ~ Mnm (F @F (Mnl (Dl) 

.;_ . . . .;_ M (D ) ) rv M (Dl) .;_ 
nr r = nmn1 

. 
+ M (D). Therefore, nmn r r 

6 ([A] [ B] ) = 6 ([A@ FB] ) ;, [Dl] + ... + [D] =B([D] • [D']) 
r 

= S(3([A]) • B([B] )). Again by 7.5, it follows that 

S(uv) = SU3(u) • B(v)), for all u, v E S(E,F). 
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D 

0 

Corollary 7.7. kerS is an ideal of S(E,F). 

{ [M (F) ] - [ F] : n E Z +} • 

As an ideal 

·it is generated by 
n 

Proof. Suppose u E kers and v E S(E,F). Then 8(uv) 

= S(B(u) • 2(v)) = S(O • S(v)) = 0, so uv E ker;3, and ker3 

is an ideal. Let I be the ideal of S(E,F) generated by 

{ [Mn(F)] - [F] :n E Z+}. Plainly, I c ker3. On the other 



hand, if A~ M (D) E SEP, then (A] - 8([A]) = n 

= [D] ([H (F)]- [F·]) E I. Extending linearly, it follows 
n 

that [A] - S([A]) E I for all A E SEP. Thus, if. 

74 

[A]- [B] E kerS, then S([A]) = S([B]), so that [A]- [B] 

=([A]- S([A]))- ([B]- S([B])) E I. Thus ker8 c: I. 0 

The factor ring S(E,F)/kerB is called the Brauer 

ring of E/F. We denote this ring by BS(E,F). For 

A E SEP, we denote (A} = [A] + kerB E BS (E,F). 

Proposition 7.8. As an abelian group, BS(E,F) is free on 

the generating set {(D) :DE SEP is a division algebra}. 

Moreover, if D, D1 E SEP are division algebras, then 

(D) = ( D 1 } if and only if D ~ D 1 as F-algebras. 

Proof. Since B 
2 

= s, it follows that s (E ,F) = ker~ S imS. 

Therefore, the canonical isomorphism BS(E,F) ~ imB of 

abelian groups, together with 7~6, imply the first statement. 

If ( D) = ( D 1 
} , then [ D I - [ D 1 I E ker S ::::. 0 = B ( [ D] - [ D 1 

] ) 

= [D] - [D']. Thus, D ~ D' as F-algebras by 7.4(c). Q 

For the field F, let FS denote its separable 

algebraic closure. In this case we denote S(FS,F) = S(F), 

and BS(F) = BS(FS,F). Whenever E c: E 1 is an inclusion of 

Galois extensions of F, there is a natural inclusion of 

categories SEP(E,F) = SEP(E' ,F), hence also of rings, 

S(E,F) C: S(E' ,F), BS(E,F) C: BS(E' ,F). Since every finite 



Galois extension of F is contained in F
5

, and F
5 

is 

the union (direct limit) of such extensions, we obtain the 

following. 

Proposition 7.9. Let F be any field. Then as rings, 

and 

S(F) = US(E,F) = 
E 

lim S(E,F), 

BS{F) = UBS(E,F) = 
E 

+ 
E 

lim BS(E,F), 
+ 
E 

where the union and the limit are over the directed set of 

all finite Galois extensions of F. 
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Finally, note that the mapping from Br(F) + BS(E,F), 

given by {A}+(A}, is a well defined injection into the 

group of units of BS(E,F). Indeed, if A and B are 

central simple F-algebras, with A ~ Mn(D) and B ~ M (D') = m 

'then the equality (A) = (B} yields D ~ D' as F-algebras, 

by 7.8. Therefore, {A}= {B} in Br(F). 

Induction and Restriction 

We claim that BS(E,F) is the correct ring into 

which one should embed Br(F). The justification of this 

assertion is the subject matter of the next chapter. Es-

pecially, we shall examine the consequences of the general 



induction lemma for Mackey-functors. For this, we need a 

corresponding induction and restriction for the rings 

S(E,F) and BS(E,F). For any intermediate subfield 

F c K c E, we shall let [A]K denote the image of 

A E SEP(E,K) in S(E,K). 
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Proposition 7.10. Let F c K c L c E be a tower of fields. 

(a) There is a group homomorphism ind = indL+K: 

S(E,L) + S(E,K) such that ind([A]L) = [A]K for all 

A E SEP (E, L) . 

(b) indL+F = indK+F 0 indL+K" 

(c) indL+K factors through the projection of S 

to BS, that is, there is a group homomorphism ind = indL+K: 

BS(E,L) + BS(E,K) such that the following diagram commutes. 

S(E,L) ind S(E,K) -l-

rrl l· 
BS(E,L) --+ BS(E,K) 

ind 

Proof. (a) This follows from Proposition 7.5, together 

with the existence of the natural forgetful functor SEP(E,L) 

+ SEP(E,K). 

(b) Clear. 

(c) Let ~L/K denote the endomorphism of S(L,K) 

given in 7.6. We must show that indL-K(kerSE/L) ~ kerSE/K" 
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[A] - [B]L E kerSE/L" 
. 

Suppose Write A "' M (Dl) + L = nl . . . 
+ M (D ) and 

nr r 
B rv M (D') - m 1 + . . . + M m (D ~) , where the iso-

- 1 s 

~orphisms are as L-algebras. Since [A]L - [B]L E kerBE/L' 

Proposition 7.4(c), together with the uniqueness statement 

of ~·ledderburn' s ·theorem, insures r = s, and (without loss 

of generality) D. rv D! as L-algebras, all i. 
1. = 1. 

Then 

D. rv D! as K-algebras, all i, so that [A)K -· [B]K 
1. = 1. 

Restriction will correspond to scalar extension. 

0 

Proposition 7.11. Let F c K c L c E be a tower of fields. 

(a) There is a ring homomorphism res = resK+L: 

S(E,K) + S(E,L) such that res([A]K) = [L@KA]L' all 

A E SEP (E,K). 

(b) resF+L = resK+L o resF+K" 

(v) resK+L factors through the projection of s 

onto BS. 

Proof. (a) 'The existence of res follows the observation 

that if A ~ B as K~algebras, then L@ 0 ~ L@ KA as 

L-algebras, and 7.5. res is a ring homomorphism because of 

the distributive property of tensor products over algebra 

products, and the fact that L@ K (A@ KB) 

~ (L@ 0> 0 L (L@ Kb) as L-algebras. 

(b) Clear. 



(c) 

Note that if 

We must show that resK-+L(kerBE/K) c: kerBE/L" 

+ 
n E z , then resK-+L([Mn(K)]K- [K]K) 

= [Mn(L)]L- [L]L. Therefore, by Corollary 7.7, and the 

fact that res is a ring homomorphism, the inclusion 

holds. 
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CHAPTER 8 

APPLICATIONS OF INDUCTION THEORY 

TO ASSOCIATIVE ALGEBRAS 

In this chapter we give a construction which allows 

us to connect the Brauer ring of the previous chapter with 

the F-Burnside rings we studied earlier. The generality with 

which this construction goes through gives hope for many 

more applications than those we include here. 

A Category Anti-Equivalence 

Fixed throughout this chapter is a finite Galois ex-

tension E/F with Galois group G = Gal(EfF). The category 

G of finite G-sets is then anti-equivalent with the category 

CSEP(E 1 F) 1 whose objects are those F-algebras R such that 

R is F-isomorphic with a finite product of (separable) sub-

fields of E containing F. In other words, CSEP is the 

full subcategory of SEP consisting of the commutative 

algebras in SEP. This anti-equivalence is given as follows. 

For s E G, define Rs = HomG (S, E) 1 under pointwise opera-

tions. Then Rs E CSEP. Moreover, i·f s f'v G/H for some sub-
= 

group H of Gl then Rs ~ EH (fixed field of H) under 

the correspondence ~{ -+ "( ( lH) I where lH is the coset 

containing the identity. For a G-map ¢:5 -+ T, there is an 

79 



80 

induced F-algebra homomorphism ~*:RT + R8 , given by 

~*(y) = y o ~, all y E RT. Conversely, if R E CSEP, 

define SR = HomF(R,E), a finite set, which become.s a G-set 

using the G-action on E. Again we observe that if L is a 

subfield of E/F, then SL is isomorphic with the transiive 

G-set of cosets modulo Gal(E/L). The isomorphism 

G/Gal(E/L) + SL is given by aGal(E/L) + ajL, any a E G. 

If a:R + R' is an F-algebra homomorphism, then the map 

a*:SR' + SR, given by a*(f) = f o a (f E SR,) , is a G-

map. Note that for any two G-sets s 1 , s 2 , we have 
. 

R8 US = HomG(Sl U s 2 ,E) ~ HomG(s1 ,E) + 
1 2 -

HomG(S 2 ,E) = R
81 

+ R
82

. 

This isomorphism takes an element a E R · to the pair s
1 
us

2
. 

Cals ,als ). 
1 2 

We now show how from an arbitrary covariant, product 

preserving functor p:CSEP +AM, we may construct an ad-

ditive contravariant functor F :G + &~, 
p 

Green-functor A = ~ . 
p p 

Namely, define 

and thus obtain the 

F ·G + AM p • by 

FP(S) = p(R8 ), and for a G-map ~:S + T, denote (as usual) 

0 
~ = Fp{~) =p(~*):Fp (T) + Fp(S). Plainly, Fp is a 

contravariant functor from G to AH. 

Proposition 8.1. Given any covariant, product preserving 

functor p:CSEP(E,F) + &~, 

additive. 

the functor F ·G + AN p. is 
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. 

Proof. Let sl, s 2 E G, and let K.: S. -+ sl u 
J. J. 

inclusions. 0 0 . 
the We must show Kl X K2 :Fp(Sl u 52) . 

+ R
5 

be 
2 

X F p (S 2 ) is an isomorphism. Let 8 : Rs us -+ R 
1 2 sl . 

R5 . be 
J. 

the canonical isomorphism, and let iT. : R
5 + R -+ 

J. 1 52 

projection. Since p preserves products, the composition 

isomorphism. However, an easy check shows that K.*= iT.6, 
J. J. 

i = 1, 2, so that ( p ( 1r 
1

) x p ( 1r 2 ) ) o p ( 8) = p (iT 
1 

e) x p (iT 
2 

8 ) 

0 0 = p (Kl *) X p (K2*) = Kl X K2. 0 

Our applications arise as follows. For any com-

mutative ring R, let AZ(R) denote the category of 

Azumaya (central separable) R-algebras. When R is a field, 

AZ(R) coincides with the category of finite dimensional, 

ce~tral simpleR-algebras. For an algebra A in AZ(R), 

let (A) denote its R-algebra isomorphism class, and {A} 

its image in the Brauer group, Br(R). Denote the set of all 

isomorphim classes in AZ(R) by AZ 0 (R). Then AZ
0

(R) be­

comes a commutative monoid under tensor products over R, 

with identity element (R). If ¢:R-+ S is a homomorphism 

of commutative rings, then the correspondence (A) -+ (S@ RA) 

(where S is considered an R-algebra via ¢) defines a 

monoid homomorphism, AZ 0 (R) -+ AZ 0 (s). Thus the correspon­

dence R-+ AZ
0

(R) defines a covariant functor, which is 

easily checked to be product preserving (that is, 



AZ
0

(R + S) ~ AZ 0 (R) x AZ 0 (S), for any commutative rings R 

and S). Similarly, the correspondence R + Br(R) is 

covariant and product preserving. 

By applying Proposition 8.1 to the restrictions of 

82 

AZ
0 

and Br to CSEP(E,F), we may obtain the Green­

functors AAZ and ABr· More explicitly, for any G-set S, 

a typical element of AA
2

(S) 

[ T 1 I cp 1 1 (Al) ] - [ T 2 I¢ 2 (A2) ] I 

will be a formal difference 

where T. is a G-set 1 cp.:T. + S 
~ ~ ~ 

is a G-map 1 and (Ai) E AZ 0 (RT.), i = 1, 2. A similar de­
~ 

scription holds for ABr(S). One of the major results of 

H ::_ G, this chapter establishes that for any subgroup 

are isomorphisms AAZ(H) ~ S(EIEH) and ABr(H) ~ 

there 

H BS (E IE ) • 

We first need a few preliminaries on the structure of anti-

"' equivalence of G and CSEP. 

Proposition 8.2. Let S and T be transitive G-sets, and 

a:R
8 

+ RT an F-algebra isomorphism. Then there is a G­

isomorphism ¢:T + S such that ¢*=a. 

Proof. Without loss of generality, we may assume S = G/H, 

and T = G/J for some subgroups HI J < G. Define 

A
8

:R
8 

+ EH by AS (y) = y (lH) (y E Rs), and AT:RT + EJ 

by AT(y) = y(lJ) (-y E RT). Then ;..s and A Q.re F-T 
H 

-+ EJ -1 
algebra i ~nrnorphi srns. Define 3: E by 3 = J\Tet ),S . 

Thus , if "'( E R
8 

, then that is, 
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BY(lH) = a(y) (lJ). Since E/F is Galois, there exists 

6 E G = Gal(E/F) such that the restriction of 6 to EH 

is B. Define ¢:G/J ~ G/H by ¢(crJ) = crBH. Check that 

this is a well defined G-isomorphism. To see that ¢* = a, 

let y E RS = HomG(S,E) and t = crJ E T = G/J. Then 

¢*(y) (t) = y¢(crJ) = ycr~H = crBy(lH) = aBy(lH) = aa(y) (lJ) 

= a (y) (aJ) = a (y) (t). 0 

Proposition 8.3. Let S and T be any G-sets, and sup­

pose a. :RS ~ ~ is an F-algebra isomorphism. Then there is 

a G-isomorphism cjl:T ~ S such that ¢* = a.. . . . 
Proof. Write s = s 1 U ... U sm and T = T1 U 

as disjoint unions of transitive G-sets. Since R
5 

+ 
1 . . . 

+ Rs ~ Rs ;}; RT ~ RT + ... + RT , and each R5 ., RT. is 
m - 1 n 1. J 

a field, we must have m = n. For 1 < i < n, let e. ,.. 
Rs <:: - 1. 

and fi E RT be the primitive idempotents corresponding to 

s. 
1. 

and T., 
1. 

respectively. That is, e. (s) = 1 
1. 

and similarly for 

if 

f .. 
1. 

is a ring isomorphism, there is a permutation rr of 

s E S., 
1. 

Since 

{1, ..• , n} suth that a.(ek) = fTI(i). Now, for each i, 

define Ai:R5 .~ R
5 

by 
1. 

is a monomorphism with 

I
f (s) 

A. (f) (s) = 
1. 0 

), . (lR ) = e .. 
1. s. 1. 

1. 

s E s. 
1. 

Then A. 
s rt s. 1. 

1. 

Moreover, if 
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then A . ( f I S ) = f • e . . Next define a . : R 
1. • 1. 1. s. 

1. 1. 

by ai (f) (t) = a (Ai (f)) (t), all t E TIT (i). It 

is straightforward to check that each a. 
1. 

is an F-algebra 

isomorphism. Thus, by 8.2, there exists cp.:T (') + S., G-
1. 'iT 1. 1. 

isomorphisms, with Define 

+ s. Then cp is a G-isomorphism. Moreover, if f E RS and 

t E T with (say) t E T (.), then ¢*(f) {t) = f¢ (t) 
'iT 1. 

= fls. (cpi(t)) = <Pi*(fis.) (t) = ai(fls.) (t) = a(l.i(fls.)) (t) 
1. 1. 1. 1. 

= a(fei) (t) = a(f) (t) • a(ei) (t) = a(f) (t)f1f(i) (t) = v.(f) (t). 

Thus, cp* = a, as needed. 

T 

Proposition 8.4. Suppose a, B:S + T are G-maps, with 

a transitive G-set. If a = 
* 

then a = B. 

Proof. Without loss of generality T = G/H, some sub-

group H <G. Let s E S, and set a(s) = gH. By transi-
•, 

0 

tivity, there exists g 1 E G such that g 1a(s) = S(s), that 

is, S(s) = g 1gH. 

we have fa = fB. 

Since a*= S*' for any f E HomG(G/H,E) 

Thus f(lH) = f(g-1gH) = g-lf(a(s)) 

-1 -1 -1 = g f(6(s)) = g g 1f(a(s)) = g g 1gf(lH). Since 

Hom
8

(G/H,E) ~ EH via the map f + f(lH), it follows from 

-1 Galois theory that g g 1g E H, hence g 1g = gh, some 

hE H. But then, S(s) = g1gH = gH = a(s). 0 



Lemma 8. 5. Let H, J < G, and fix a double coset 

r . . crl 
composition G = u Hcr.J. Then G/J 'V H/H n J u 

a . 
u H/H n 

Proof. 

i=l 1 

rJ as H-sets. 

For each i, 

cr. 

cr. 
define S.:H/H n 1J + G/J by 

1 

85 

de-

B.(h(Hn 
1 

1 J)) = hcr. J. 
1 

It is straightforward to verify that 
. . 

the map 13 = f\ U ... U Br is an H-isomorphism. 0 

Proposition 8.6. Let H < G. Let s 1 , s 2 be any G-sets, 

and suppose there are G-maps a.: S. + G/H, 
1 1 

i = 1, 2. Define 

q,:R 0 R + R by ¢(f0)g) (x,y) = f(x) • g(y), 
sl RG/H s2 slxG/Hs2 

all (x,y) E s 1xG/Hs 2 . Then <P is an RG/H-algebra and 

birnodule isomorphism. 

Proof (Sketch). First suppose s
1 

and s 2 are transitive, 

so that with no loss of generality, s 1 = G/H
1 

and 

= g.H, 
1 

into 

for some subgroups 
g. 

i = 1, 2. Then H. 1 c 
1 

g2 
H2 double costs: 

g. 
H.1 

Hl' 

H, 

H = 

H2 < G. Say a. (lH. ) - 1 1 

so we may decompose H 

n 
• gl gi 

Since U Hl a. H2 . 
. 1 1 1= 

H. 
~ E 1 ~ E 

1 
as RG/H- algebras, Proposition 7.3 

implies 



Explicitly, this map sends f@ g to 

-1 -1 
( ... , f(gl Hl) • g(crig2 H2), ... ). 

Now if an element I. f. fx\ g. E ker¢, then 
J. J.~ J. 
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L . f . (xH1 ) • g. (yH2 ) 
J. J. J. 

However, since each 

= 0, whenever (xH1 ,yH2 ) E G/H1xG/HG/H2 . 

it follows that (g~1 ,crig;1 ) a. E H, 
J. 

Thus I. f. IX\ g. 
J. J.~ J. 

is in the kernel of the 

map described in the first paragraph (which was an iso-

morphism), so I.f.@g. = 0, 
J. J. J. 

and q, is injective. 

Surjectivity of q, follows from a dimension count. 

Set T ={a E G:a1 (1H1 ) = a 2 (crH 2)}. If a E T, then H1 aH2 

c T, so we may decompose T into H1 - H2 double cosets: 

m 

T = U H
1

T. H
2

• 
. 1 J. J.= 

Set 

Bi~G/Ji + G/H1xG/HG/H2 by 

and define 

B. (gJ. ) = (gHl,gTiH2). Five 
J. J. 

pages of routine calculations show that each f3. is an in-
J. . . . 

jective G-map, and that s = s1 U . . . u Sm:G/Jl u . .. u G/J 

+ G/H1xG/HG/H2 is a G-isomorphism. Therefore 

establishes that 

of {1, ... , n} 

m J. 
II E 1

• 

i=l 

m = n, 

Another straightforward argument 

and that there is a permutation 

-1 

with J -;r(i) conjugate to 
gl g ?CJ. 

H
1 

0 H
2

- 1 
. 

m 
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In particular, so the dimensions 

coincide, and ¢ is surjective. 
. . 

In general, write s1 = Tl U U Tr and 
. 
U Ut, as unions of transitive G-sets. Then 

'\; ITR@ R '\; IIR 
i,j Ti RG/H Uj = i,j TixG/HUj 

= 
R 

U T.xG/HU. 
i, j ~ J 

Check that this isomorphism 

is <P. 0 

The Isomorphism Theorem 

Let H <G. For any S E G, A E AZ(R
8

) and G-map 

a:S -+ G/H, define an A to be A as a ring, 

with RG/H action induced from a*:RG/H -+ R8 • Thus, if 

x E RG/H and a E A, then x · a= ~~.~-* (x)a. Note that 

A ~ Aa as F-algebras, since a* is an F-algebra 

homomorphism. 

Proposition 8.7. Let H ~ G, and let [S,a 1 (A)], 

[ T 1 S , ( B ) ] E AA Z ( H ) . The n [ S , a , (A ) ] = [ T , S , ( B ) ] if and on 1 y 

if A B a ~ B as RG/H-algebras. 

Proof. ~> By Corollary 3.4 1 there is a G-isomorphism 

¢:T-+ s with a~= 6 and ¢
0

((A)) = (B). This last con-

dition yields an RT-algebra isomorphism ) : RT 0 R A -+ B . 
s 

Define y:A -+ B by y (a) = :¥~ (1@ a) 1 all a E A. Since 



R5 ~ RT, a is a ring isomorphism. Furthermore, if 

x E RG/H' then y(x ·a)= y(a*(x)a) = y(l@a*{x)a) 

= 1~(¢*a*(x)@a) = 1~(S*(x)@a) = S*(x)w(l@a) = B*(x)y(a) 

= x · y (a). Thus y is an RG/H -algebra isomorphism of 

Aa to Bs. 
~) Suppose y:A + B 

a S is an RG/H algebra iso-

morphism. Then y{Z(Aa)) = Z(B
8
), that is, y(R

5
) = RT. 

By Proposition 8.3, there is a G-isomorphism ¢:T + S with 

¢* = y. We claim that a¢ = s. By Proposition 8.4, since 

G/H is transitive, it is enough to show that ¢*a* = S*: 
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RG/H + RT. Then, if 

= S*(x)y(lA) = S*(x). 

x E RG/H' we have ¢*a*{x) = y(a*(x)) 

Finally we must show that ¢ 0 ((A)) 

= (B), that is, RT@ R A ~ B as RT-algebras. The map 
s 

~:RT@ R A + B given by 1~ (x@ a) = xy (a) is such an iso­
S 

morphism. Thus ¢: (T,S, (B))+ (S,a, (A)) is an isomorphism. 0 

For any subgroup H ~ G, the isomorphism 

RG/H ~ EH allows us to replace RG/H by EH, if we 

consider every RG/H algebra to be an EH-algebra via this 

isomorphism. Define 

1~ ( [S,et,, (A)]) = [Aa]. 

and injective. 

H 
~H = ~:AAZ(H) + S(E,E) by 

By Proposition 8.7, ~ is well defined 

Theorem 8. 8. For any subgroup H < G, the map '-!1 is a 
"H 

ring isomorphism. 



Proof. Let [S,a,(A)], [T,(3,(B)] E AAZ(H). Since 

(A) + (B) = (A+ B), and (A .f. B)a.US ~Aa .f. BS (via the 

identity) 1 we have 't'([S,a, (A)] + [T,S, (B)]) 
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= 'f ( [ S , a , (A) ] ) + 'f ( [ T, B , (B) ] ) • Now 'f ( [ S , a , (A) ] • [ T , S 1 (B) ] ) 

0 0 
= 'f ( [S~/HT,C4XG/HS'rrs (A) • rrT (B)]) 1 where 

0 0 
rr

5
(A) • TTT(B) 

= (RSx T@R A) • (RS T® R B) 
G/H S XG/H T 

= (A@ R fx'\ R 0 B) 
RS SxG/HT~RSxG/HT SxG/HT R~ 

= <.r-GR RS 'I'@ R B) = (A@ R Rs® R RT@ R B) 
S xG/H T S G/H T 

by 8.6. (Note that Ali' B 
"V..RG/H 

is an 

algebra via the composition R + R @ R 
SxG/HT S RG/H T 

+A@ R B). 
G/H 

The identity map: <JQ B)r 
RG/H axG/HB 

+ A @ R B is an RG/H algebra isomorphism. 
G/H 

Thus, 

't'[S,a,,(A)] • [T,S,(B)]) = [(A@R B) 
6
1 

G/H axG/H 

=[A @R B
8

] =[A ][B 0 ] = 'f[S,cti(A)]) • 'f([T,S,(B)]). 
a G/H a ~ 

To see that is surjective, let A E SEP(E,EH) be simple, 

with Z(A) ~ EJ for some subgroup J <H. Let a:G/J + G/H 

be projection, that is, a(gJ) = gH, all g E T. Then, 

viewing A as an 

J 
RG/J ~ E , we have 

RG/J-algebra via the RG/H isomorphism 

A E AZ(RG/J). It follows that 

':-' ( [G/J 1 ':1., (A)]) = [.'\]. Thus 't is surjective by Proposition 

7. 5 
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Following an almost identical proof, we obtain the 

final result of this section. 

Theorem 8.9. Let H <G. Define a map ABr(H) ~ BS(E,EH) 

by [S,a,{A}] ~ (Aa). Then this mapping is an isomorphism. 

Consequences of the Mackey 
Induction Lemma 

Theorem 8.8 will permit us to apply the induction 

theory of Mackey-functors to rings H S(E,E ), where H < G. 

However, we must first verify that restriction and induction 

for AAZ and S coincide. 

Lemma 8.10. Let H ~ G, and set L = EH. Let n:G/H 

~ G/G be the canonical map. Then the following diagrams 

both commute. 

n* n* 
(a) AAZ {G) AAZ (H) (b) AAZ{G) AAZ{H) 

~G! 1 
tt'H llJ 1 ~H 'G 

v 

S(E,F) S(E,L) S(E,F) S(E,L) 
resF~L indL~F 

Proof. (a) It is convenient to identify with F. 

If [S, (A)] E AAZ{G), and if ;r
8

:G/H x s ~ s is projection, 

then by Proposition 8. 6, ;r~ (A) = (RG/Hxs0 R A) 
s 

Furthermore, if TI :G/H :< s __,. G/H 
H 

is 
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tion, rrH*(y) = y@l all 

RG/H@FA -r (RG/H@FA)'ITH 

Thus, the identity map 

is an algebra isomorphism. 

0 
Therefore, _I{'Hn*([S, (A)])= I{'H([G/H x S,rrH,rrS(A)]) 

= 1'H([G/H x S,rrH, (RG/H@FA)]) = [(RG/H@FA)'ITH]L 

= [RG/H@FA]L = [L@FA]L = resF-+L([A]F) = resF-+LI{'G([S, (A)]). 

(b) Let [S,a,(A)] E Az(H). Then I{'Gn*([S,a,(A)]) 

= I{'G ( [S, (A)]) = [A]F = [Aa]F = indL-+F ( [Aa] L) 

= indL-+F~H([S,a, (A)]), since A~ Aa as F-algebras. 0 

We are interested in studying ker(resF-+L) and 

im(indL-+F); it will be convenient to proceed more generally. 

Let M be any Mackey-functor G -r AB, and let S be a 

G-set. Denote by KM(S) the kernel of the map (ns)*: 

M(G) = M(G/G) -+ M(S), and by IM(S) the image of Ins)*: 

·M(S)-+ M(G). 

Lemma 8.11. (Induction lemma for Mackey-functors.) Let 

G be a finite group, and M:G -r AB a Mackey-functor. Then 

for any G-set S, 

(a ) 1 G 1 • ( I M ( s ) n KM ( s ) ) = o , 

(b) I G I • M (G) c IM ( s) + !).1 ( s) • 

Proof. See Dress (1971, p. 64). [] 

In pa=ticular, using the commutivity from Lemma 8.10, 

together with Theorem 3.6 (AAZ is a Green-functor), we 

obtain 



92 

Theorem 8.12. Let E/F be a finite Galois extension with 

Galois group G. Let H < G, and set 

(a) im(indL+F) n ker(resF+L) = 0, 

H L == E . 

(b) IGI • S(E,F) c im(indL+F) + ker(resF+L). 

Then 

Proof. Take S = G/H in 8.11. We may drop multiplication 

by IGI in (a) because S(E,F) is free, hence torsion free, 

by. 7.5. The rest is clear. 0 

Corollary 8.13. Let L/F be a finite separable field ex-

tension, and let A and B be separable L-algebras. If 

L~FA ~ ~FB as L-algebras, then A~ B as F-algebras. 

Proof. By a standard characterization of separable 

algebras over fields, we may write A and B as finite 

products of finite dimensional, simple L-algebras, where 

each simple algebra has as center a finite separable field 

extension of L. Since L/F is finite separable, it follows 

that there is a finite Galois extension E/F containing the 

centers of all of these simple algebras. Thus, A, 

BE SEP(E,L). Consider [A]F- [B]F E S(E,F). Plainly, 

indL+F([A]L- [B]L) = [A]F - [B]F. Also, resF+L([A]F - [B]F) 

= [L@FA]L [L@FB]L = 0, since LQFA ~ L@FB as 

L-algebras. Thus [A]F - [B]F E im(indL+F) n ker(resF+L) = 0, 

so that [A]F = [B]F. By 7.4 (c), A~ B as F-algebras. 0 

Of course, this result is not true if A and B do 

not contain L in their centers. For example, take F = R, 



L = C, A= M2 (R) and B = E (quaternions). Then A~ B, 

but cz@ A ~ M2 (<C) ~ e@ B, as ~·-algebras. 8 .12 (b) yields 

a much stranger consequence. 

Corollary 8.14. Let E/F be a finite Galois extension. 

Suppose that A is a separable F-algebra whose center is 
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isomorphic with a finite product of subfields of E/F, that 

is, A E SEP(E,F). Then there are F-algebras B, 

C E SEP (E,F) with E@ FB ~ E@ Fe as E-algebras, and there 

are algebras Y, Z E SEP(E,E) (that is, finite products of 
. . . . 

central simple E-algebras) such that A+ ... +A+ B + Y 

~ C + Z as F-algebras, where [E:F] copies of A appear in 

the left hand product. 

Proof. Take H = {1} in Theorem 8.12, so that L = E. 

Set n = [E:F] = !Gal(E/F) I. Then n[A]F E 'im(indE~F) 

+ ker(resF~E), so that n[A]F = indE~F([Z]E- [Y]E) + [C]F 

- [B]F, where [C]F- [B]F E ker(resF~E), and [Z]E- [Y]E 

E S(E,E). Thus, n[A]F + [Y]F + [B]F = [Z]F + [C]F. Using 

7.4(c), this translates to the desired result. 0 

It is worth mentioning that results similar to 8.10 

and 8.12 hold upon replacing AAZ by ABr and S by BS. 

However, these results tell us nothing new, so we will not 

formulate them precisely. 



CHAPTER 9 

THE BRAUER RINGS OF AND Q 

We are ready to combine the results of the preceeding 

chapters to determine the structure of the ring ~BS(E,~ ) p 

= c@7lBS (E,~p) I for a finite Galois extension E of the 

p-adic rationals ~p· We shall begin by interpreting 

normality for the functor FBr· 

Normal Algebras 

The following definition was first given by Eilenberg 

and MacLane (1948). 

Definition 9.1. Let F be a field, and let L be a 

finite separable field extension of F. The central simple 

L-algebra A is normal over F if every F-automorphism of 

L can be extended to an F-algebra automorphism of A. 

As we shall see, if L is a finite separable ex-

tension of then every central simple L-algebra is 

normal over However, non-normal algebras exist. 

For example, let F = (J, L = ~(/2), and let A 

b th 1 . d t · 1 b (-l ,L-/2") . Thus, e e genera lZe qua ernlon a ge ra 

A= L·l S L•i ED L·j :2 L·k, wtere i
2 

= -1, j 2 = -/2, and 

ij = -ji = k. Define o:L-+ L by ::;(,/2) = -/2 and suppose 
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a has an extension to an F-algebra automorphism ¢ of A. 

Set i 0 = ¢(i), j 0 = ¢(j), and k 0 = ¢(k). Since ¢ is 

F-linear, the set {l,i 0 ,j 0 ,k0} is linearly independent 

over F I from which it follows that A = L·l e L·io 

ffi T- • ffi L k . 2 1 . 2 j,:\2 d . . 
\.D.u~ 0 w • 0. However, .l. 0 = - , J 0 = v' L I an .l. oJ 0 

::: - j 
0 

i 
0 

= k 
0 

, so that A ru (-l ' /2) that is ( -l, -/2) 
= L I L 

{ -1 ,L/2) • h . . h . . . ru T .J.s .J.somorp .J.sm ~s ~mpossible since -1 is 

not the·norm of any element of L(l-1) to L, that is, 

-1 ~ NL{I-l)/L(L(I-1)). 
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The importance of normal algebras to us is indicated 

by the following proposition. 

Pro Eo si tion 9.2. Let E/F be a finite Galois extension, 

with G = Gal (E/F). Let S E G be transitive, and let 

{A} E Br (R8 ) . Then {A} is a normal element of FBr(S) if 

and only if A is a normal R8-algebra over F. 

Proof ::$) • Let a E AutF (R8 ) . We must show that ·:t can 

be extended to A. By Proposition 8.2, we may find 

¢ E AutG{S) with ¢*=a. 

that ¢ 0 ( {A} ) = {A} . But 

Since {A} is normal, it follows 

¢ 0 ( {A} ) = { R S @ R A} , where R S 
s 

is considered as an RS-algebra via a, that is, x · y 

= xa(y), for x, y E RS. By counting dimensions, there 

is an RS-algebra isomorphism Define y :A 

-+A by y(d) = :;; (l@d), all dE A. If r E R8 , then 
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y(rd) = 7~(l@rd) = ~(a(r)@d) = ~~(a(r)(l@d)) 

= a (r) l./J (1@ d) = a (r) y (d). Since a is F-linear, y is an 

F-algebra isomorphism. Taking d = 1 yields y(r) = a(r) 

all r E R8 , so y extends a. 

<=) Let ¢ E AutG(S). We must show that 

{A} = ¢ 0 ({A}) = {R8 @ R A}, where R8 is considered as an 
s 

R8-algebra via ¢*' as above. Since ¢* E AutF(R8 ), the 

normality of A implies the existence of a E AutF(A) such 

that aiR = ¢*. 
s 

t:::\ -1 
~(r~d) = ¢* (r) 

The map ~:R8 @R A-+ A, given by 
s 

• d, is a well defined F-algebra iso-

morphism. Therefore, a, o ,~ : RS 0 R A -+ A 
s 

is an R8-algebra 

isomorphism, showing { RS 0 R A} = {A} ' 
s 

The Ring BS(E,~p) 

as needed. 0 

For a prime p E Z, let ~p denote the completion 

of ~ at the p-adic valuation. The next result shows that 

all finite dimensional simple 0 -algebras are normal. It is 
p 

due to Janusz (1978), and the reader may refer to this paper 

for the proof. 

Proposition 9.3. Let 0 ~ p E z be a prime. For i = 1, 

2, let L. 
l 

be a finite extension of tlp' and let A. 
l 

be 

a central simple Li-algebra. If A1 and A2 are isomorphic 

as rings, then invA1 = invA2 . 
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This proposition clearly also holds for p = oo, that 

is, ~p = lL ~'7e remark that the notation invA for a 

central simple L-algebra A denotes its Hasse invariant. 

For a discussion of the properties of this invariant see 

Pierce (1982). The most important fact for us is that the 

class of the algebra A in Br(L) is completely determined 

by its Hasse invariant. 

Corollary 9.4. Let 0 i= p E z be a prime, and let L be 

a finite extension of (2 • p Then every central simple L-

algebra is normal over ID • p 

Proof. Let A be a central simple L-algebra, and let 

a E Aut~ (L). Define an L-algebra B to be A as a ring, 
p 

with L-algebra structure given by ! • b = a(!)b, all t E L, 

b E B = A. Then B is a central simple L-algebra, and 

B 'V A as rings (in fact as 0 -algebras). By 9.3, A and = p 

B yield the same class in Br (L) . Since dimLA = dimLB' 

we have A ~ B as L-algebras. Let ¢:A-+ B be an L-

algebra isomorphism. Using the ~ -algebra isomorphism 
p 

id:B-+ A, we obtain the ~-algebra isomorphism )' = id o qJ: 
p 

A-+ A. Then, if ! E L, y(!lA) = ¢(!1A) = t • ¢(1A) 

= a (t ) 1 A, thus y extends a. 0 

corollary·9.5. Let E be a finite Galois extension of ~p' 

with G = Gal(E/D ). Then every transitive G-set is normal 
p 

over FBr· 
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Proof. This follows directly from 9.2 and 9.4. 0 

A mildly surprising result follows from our work. As 

shown by Eilenberg and MacLane (1948, Corollary 7.3), if 

E/F is cyclic, then any central simple E-algebra which is 

normal over F can be obtained by_extension of scalars from 

a central simple F-algebra. Combining this with Corollary 

9.4 we obtain the following. 

Corollary 9.6. Let 0 ~ p E Z be a prime, and suppose 

that E/~p is a finite cyclic Galois extension. Then the 

canonical homomorphism BR(0p) + Br(E) is surjective. 

Theorem 9.7. Let E be a finite Galois extension of the 

p-adic field Qp' and let G = Gal(E/~p). Let n = jP(G) I 

be the number of conjugacy classes of subgroups of G. Then 

~BS(E,Qp) ~ ITniD(~/Z), where the right hand side is a product 

of n copies of the group algebra Q(~/Z), 

Proof. By Theorem 8.9, ~BS(E,~p) ~ ~ABr{G). Since every 

transitive G-set is normal over FBr' Theorem 5.12 implies 

that .~ABr{G) ~ 

local field is 

IT ~Br(R8 ). However, the Brauer group of a 
~P a 
~~~' thus Br(R8 ) ~ ~/Z for all a E P. 

a 
The result follows. 

Passing to direct limits we can state 

0 

Proposition 9.8. Let ~p denote the algebraic closure of 

Qp. Then ~BS(~p'~p) is von Neumann regular. 



Proof. By Theorem 8.9 and Corollary 5.13, ~BS(E,~p) is 

von Neumann regular for each finite Galois extension E/~ . 
p 

The proposition follows from Proposition 7.9 and the fact 

that the property of being von Neumann regular is preserved 

under the taking of direct limits. 

The Ring BS(E,O) 

Let E be a finite Galois extension of ~- If 

p ~ 0 is an integral prime, then p factors in OE (the 
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0 

(Pl ... P )e. 
g ring of algebraic integers of E) as a product 

Since each completion EP. is the compositum of 
~ 

bed¢ied in EP.) 
~ 

and e!p' the extensions Ep /~ 
i p 

E (em-

are all 

Galois. We introduce the notation to denote the comp-

ositum over IQP of the Galois extensions E-o , ••• , Ep 
. "1 g 

(Ep is the splitting field over ~p of a generating poly­

nomial for the extension E/Q). If p = oo is the infinite 

prime, set E
00 

= R when all of the infinite primes of E 

are real, otherwise set E
00 

= C. We shall use this notation 

in attempting the computation of BS(E,~). We first recall 

a basic number theory result. Its proof may be found, for 

example, in Narkiewicz (1974, Proposition 6.1). 

Proposition 9.9. Let L be a finite extension of ~ 

with ring of integers OL. 



(a) Let 0 -:;! p E ~ be a prime, and 

e . . p g where the P. are ... g l. 

OL. Then there is a Q -algebra p . 
L@ I)_Qp ~ Lpl + 

. 
•.. + Lp . 

g 
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write pO - = el 
L pl 

distinct prime of 

isomorphism 

(b) If the infinite prime of ~ factors into r 1 real 

and complex infinite primes in L (so that 

then L@~R 

For a Galois extension e of we shall use the 

notation [ ] respectJ.'vely ( } to denote elements o~.~.. p' p' 

Proposition 9.10. Let E/~ be a finite Galois extension. 

For each prime p (possibly infinite) of ~ define a map 

9p:S(E,qJ) + S(Ep,Qp) by 6p([A]) = [AG)~~p]p. Then 

(a) e is a ring homomorphism. 
p 

(b) 9, factors through the projection of S to BS. That 
p 

is, there is a ring hmomomorphism S :BS (E,~) + BS (E ,Q ) p p p 

such that the diagram 

Sp 
S(Ep'~p) S(E,~) 

Til I ii 
I 

I J ~· 

BS(E,!D) BS(E ,~) 
!': p p 
" p 

commutes. 
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Proof. (a) If A E SEP(E,~) is simple, we may assume 

without loss of generality that Z(A) = L, 

Then A@ OQp rv A@ L (L x ~(}p) ~ A@ L (Lp 

where ~ c L c E. 

g 1 

. . 
+ ... + Lp) 

g 

~ . II ll.(]} L Lp . as ~p-algebras, by Proposition 9.9. Since each 
J.=l J. 

A@ L LP. is a central simple 
J. 

LP.-algebra, and 
J. 

~ c L 
p- P. 

J. 

c E , AI'X\ /i)~p is an element of SEP (E ,~ ) . - p ~~ p p It follows 

from this, together with Proposition 7.5, that e . is a 
p 

well defined group homomorphism. If also BE SEP(E,Qp), 

then the Qp -isomorphism (A@ ~B)@ (Qtlp 

~ (A® ~e)p)@ ~ (B@ e)~p) ~·hows that 6p is a ring 
p 

homomorphism. These same arguments work for p = oo 

(b) Let 0 < n E Z. Then e ([M (O)l - [OJ) p n 

= [Mn(~p)]p- [~p]p. Part (b) then follows from part (a) 

and Corollary 7.7. 0 

Patching together the homomorphism of Proposition 

9.10 over all primes p, we obtain ring homomorphisms 

c = (6 ) :S (E,O) + ITS(E ,~ ), " p p p p 

and 

e = ( 8 p) : BS ( E I Q) + TIBS (E , ~ ) . 
p p p 
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-The image and kernel of Cl v are the subject of the remainder 

of this chapter. 

For each prime p (possibly p = oo), let G p 

= Ga 1 ( E , e} ) • 
p p 

Then 

marks, the Burnside ring of G I p 

By earlier re-

can be identified 

as a subring of ABr(Gp)' and thus as a subring of 

It is easy to see that A(G ) p correponds to the 

subring of BS(E ,~ ) consisting of all sums of fields 
p p 

A(G ) = O~n.(L.} :n. E Z, ~ c: L. c: E }. p ~ ~ p ~ p - ~ - p 

Proposition 9.11. Let B:BS(E,Q) + ~BS(Ep,0p) be the 

ring homomorphism given above. Then ime is contained in 

the restricted direct product of the rings BS(Ep'~p) over 

the subrings A(Gp). 

Proof. The statement of the proposition is equivalent with 

showing that given any x E BS(E,~), one has e (x) E A (G ) 
p p 

for all but finitely many p. Let A E SEP(E,Q) with A 

simple, where without loss of generality, Z(A) = L, with 

(n = DegA) for all but 

finitely many _primes P of L (see Pierce (1982, Proposi-

tion 18.5)), and there are at most finitely many primes of 

0 lying under these exceptional primes. If p is not one 

g g 
of them then A 0 ora ~ . II A 0 L Lp. ~ . II Mn (Lp.) I so that 

p ~=1 ~ ~=1 ~ 
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ep ((A}) = it (Mn (Lp i)) ~ = it ( lp / p E A(Gp). Since BS (E,Q) 

is spanned by the classes (A}, where A is simple, the 

result follows from the additivity of e. 0 

We wish to look at ker~. For an algebraic number 

field K, let KA denote its adele ring. We need a 

characterization of number fields with isomorphic adele 

rings. 

Proposition 9.12. Let K and L be finite extensions 

of ~- Denote by VK the set of non-zero primes of K 

(including the infinite primes), and similarly for L. Then 

the following are equivalent. 

(1) KA and LA are (topologically) isomorphic. 

(2) There is a bijection l/J of VK onto VL such that 

given any prime p of K, p and :jJ (P) lie over the 

same prime p of ~I and ~ rv L = l);(P) as Qp-algebras. 

For every prime p of Q, there is a Q -algebra p ( 3) 

isomorphism 

Proof. The equivalence (1) ~ (2) is given in Komatsu 

(1978). The equivalence (2) ~ (3) follows directly from 

Proposition 9.9 and the uniqueness statement of Wedderburn's 

theorem. 0 
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Corollary 9.13. Let E/~ be a finite Galois extension, 

and suppose K and L are subfields of E. Then (K} - (L) 

E kerB· if and only if KA rv L . = A 

Proof. Since K and L are commutative, (K) - (L) 

E kerS iff [K] - [L] E kerB iff K@ (/).fl>.p ~ L@ ~e!p for 

all primes p of ~- Apply the previous proposition. 0 

At this point the question naturally arises to find 

nonisomorphic number fields with isomorphic adele rings. An 

infinite list of s?ch examples was given by Komatsu (1978). 

We state his result for completeness. 

Pro12osition 9.14. Let m be a square free integer such 

that m ~ +1, +2, and m - 2, 7, 14, 15 (mod 16) . Let n 

be an integer with n > 3, and set s = 2n. Put 

K s-= ~(vm) and L = ~ (/2 X ~m) . Then KA ~ LA' but K and 

L are not isomorphic. 

We remark that it is an in·teresting and open problem 

to classify radical extensions of 0 by the isomorphism type 

of their adele rings. 

If we let I be the ideal of BS(E,~) generated by 

the set {(K) - (L) :KA"' LA}, then the above shows that 

I c ker9. If [E:~] ~ 6, or if E/~ is abelian, then the 

work of Perlis (1977) establishes that I = 0. Hence the 

equality I = ke1:e would imply the injectivity of -..... in 



these cases. However, it is not known, even when the ex­

tensions E/~ is abelian, whether the inclusion 
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I c kerB is proper or not. Not wishing to conjecture the 

wrong result, we finish our work here, leaving the foregoing 

problem unsolved. 
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